

2012

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 2-8

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 9–19

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Let z = 5 - i and w = 2 + 3i.

What is the value of $2z + \overline{w}$?

- (A) 12 + i
- (B) 12 + 2i
- (C) 12-4i
- (D) 12-5i
- 2 The equation $x^3 y^3 + 3xy + 1 = 0$ defines y implicitly as a function of x.

What is the value of $\frac{dy}{dx}$ at the point (1, 2)?

- (A) $\frac{1}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{3}{4}$
- (D) 1

3 The complex number z is shown on the Argand diagram below.

Which of the following best represents $i\overline{z}$?

(A)

(B)

(C)

(D)

4 The graph y = f(x) is shown below.

Which of the following graphs best represents $y = [f(x)]^2$?

5 The equation $2x^3 - 3x^2 - 5x - 1 = 0$ has roots α , β and γ .

What is the value of $\frac{1}{\alpha^3 \beta^3 \gamma^3}$?

- (A) $\frac{1}{8}$
- (B) $-\frac{1}{8}$
- (C) 8
- (D) -8

6 What is the eccentricity of the hyperbola $\frac{x^2}{6} - \frac{y^2}{4} = 1$?

- (A) $\frac{\sqrt{10}}{2}$
- (B) $\frac{\sqrt{15}}{3}$
- (C) $\frac{\sqrt{3}}{3}$
- (D) $\frac{\sqrt{13}}{3}$

A particle P of mass m attached to a string is rotating in a circle of radius r on a smooth horizontal surface. The particle is moving with constant angular velocity ω . The string makes an angle α with the vertical. The forces acting on P are the tension T in the string, a reaction force N normal to the surface and the gravitational force mg.

Which of the following is the correct resolution of the forces on P in the vertical and horizontal directions?

- (A) $T\cos\alpha + N = mg$ and $T\sin\alpha = mr\omega^2$
- (B) $T\cos\alpha N = mg$ and $T\sin\alpha = mr\omega^2$
- (C) $T \sin \alpha + N = mg$ and $T \cos \alpha = mr\omega^2$
- (D) $T \sin \alpha N = mg$ and $T \cos \alpha = mr\omega^2$
- 8 The following diagram shows the graph y = P'(x), the derivative of a polynomial P(x).

Which of the following expressions could be P(x)?

- (A) $(x-2)(x-1)^3$
- (B) $(x+2)(x-1)^3$
- (C) $(x-2)(x+1)^3$
- (D) $(x+2)(x+1)^3$

The diagram shows the graph y = x(2-x) for $0 \le x \le 2$. The region bounded by the graph and the x-axis is rotated about the line x = -2 to form a solid.

Which integral represents the volume of the solid?

$$(A) \quad 2\pi \int_0^2 x \left(2-x\right)^2 dx$$

(B)
$$2\pi \int_{0}^{2} x^{2}(2-x)dx$$

(C)
$$2\pi \int_{0}^{2} x(2-x)(2+x) dx$$

(D)
$$2\pi \int_{0}^{2} x(2-x)(x-2)dx$$

Without evaluating the integrals, which one of the following integrals is greater than zero?

(A)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x}{2 + \cos x} dx$$

- (B) $\int_{-\pi}^{\pi} x^3 \sin x \, dx$
- $(C) \quad \int_{-1}^{1} \left(e^{-x^2} 1 \right) dx$
- (D) $\int_{-2}^{2} \tan^{-1}\left(x^{3}\right) dx$

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{2\sqrt{5}+i}{\sqrt{5}-i}$$
 in the form $x+iy$, where x and y are real.

(b) Shade the region on the Argand diagram where the two inequalities

$$|z+2| \ge 2$$
 and $|z-i| \le 1$

2

2

both hold.

(c) By completing the square, find
$$\int \frac{dx}{x^2 + 4x + 5}$$
.

(d) (i) Write
$$z = \sqrt{3} - i$$
 in modulus-argument form.

(ii) Hence express z^9 in the form x + iy, where x and y are real.

(e) Evaluate
$$\int_0^1 \frac{e^{2x}}{e^{2x} + 1} dx.$$
 3

(f) Sketch the following graphs, showing the x- and y-intercepts.

(i)
$$y = |x| - 1$$

(ii)
$$y = x(|x|-1)$$

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) Using the substitution $t = \tan \frac{\theta}{2}$, or otherwise, find $\int \frac{d\theta}{1 \cos \theta}$.
- (b) The diagram shows the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with a > b. The ellipse has focus S and eccentricity e. The tangent to the ellipse at $P(x_0, y_0)$ meets the x-axis at T. The normal at P meets the x-axis at N.

(i) Show that the tangent to the ellipse at P is given by the equation

$$y - y_0 = -\frac{b^2 x_0}{a^2 y_0} (x - x_0).$$

- (ii) Show that the x-coordinate of N is x_0e^2 .
- (iii) Show that $ON \times OT = OS^2$.

Question 12 continues on page 11

Question 12 (continued)

3

2

c) For every integer $n \ge 0$ let

$$I_n = \int_1^{e^2} \left(\log_e x\right)^n dx.$$

Show that for $n \ge 1$

$$I_n = e^2 2^n - nI_{n-1}.$$

d) On the Argand diagram the points A_1 and A_2 correspond to the distinct complex numbers u_1 and u_2 respectively. Let P be a point corresponding to a third complex number z.

Points B_1 and B_2 are positioned so that $\triangle A_1PB_1$ and $\triangle A_2B_2P$, labelled in an anti-clockwise direction, are right-angled and isosceles with right angles at A_1 and A_2 , respectively. The complex numbers w_1 and w_2 correspond to B_1 and B_2 , respectively.

- (i) Explain why $w_1 = u_1 + i(z u_1)$.
- (ii) Find the locus of the midpoint of B_1B_2 as P varies.

End of Question 12

1

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) An object on the surface of a liquid is released at time t=0 and immediately sinks. Let x be its displacement in metres in a downward direction from the surface at time t seconds.

The equation of motion is given by

$$\frac{dv}{dt} = 10 - \frac{v^2}{40},$$

where ν is the velocity of the object.

- (i) Show that $v = \frac{20(e^t 1)}{e^t + 1}$.
- (ii) Use $\frac{dv}{dt} = v \frac{dv}{dx}$ to show that $x = 20 \log_e \left(\frac{400}{400 v^2} \right)$.
- (iii) How far does the object sink in the first 4 seconds?
- (b) The diagram shows $\triangle S'SP$. The point Q is on S'S so that PQ bisects $\angle S'PS$. The point R is on S'P produced so that $PQ \mid RS$.

(i) Show that PS = PR.

(ii) Show that $\frac{PS}{QS} = \frac{PS'}{QS'}$.

1

Question 13 continues on page 13

Question 13 (continued)

(c) Let P be a point on the hyperbola given parametrically by $x = a \sec \theta$ and $y = b \tan \theta$, where a and b are positive. The foci of the hyperbola are S(ae, 0) and S'(-ae, 0) where e is the eccentricity. The point Q is on the x-axis so that PQ bisects $\angle SPS'$.

- (i) Show that $SP = a(e \sec \theta 1)$.
- (ii) It is given that $S'P = a(e \sec \theta + 1)$. Using part (b), or otherwise, show that the x-coordinate of Q is $\frac{a}{\sec \theta}$.

1

(iii) The slope of the tangent to the hyperbola at P is $\frac{b \sec \theta}{a \tan \theta}$. (Do NOT prove this.)

Show that the tangent at P is the line PQ.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Find $\int \frac{3x^2 + 8}{x(x^2 + 4)} dx.$

(b) The diagram shows the graph $y = \frac{x(2x-3)}{x-1}$. The line ℓ is an asymptote.

(i) Use the above graph to draw a one-third page sketch of the graph

$$y = \frac{x-1}{x(2x-3)}$$

indicating all asymptotes and all x- and y-intercepts.

(ii) By writing $\frac{x(2x-3)}{x-1}$ in the form $mx+b+\frac{a}{x-1}$, find the equation of the line ℓ .

2

Question 14 continues on page 15

Question 14 (continued)

(c) The solid ABCD is cut from a quarter cylinder of radius r as shown. Its base is an isosceles triangle ABC with AB = AC. The length of BC is a and the midpoint of BC is X.

The cross-sections perpendicular to AX are rectangles. A typical cross-section is shown shaded in the diagram.

Find the volume of the solid ABCD.

Question 14 continues on page 16

Question 14 (continued)

(d) The diagram shows points A and B on a circle. The tangents to the circle at A and B meet at the point C. The point P is on the circle inside $\triangle ABC$. The point E lies on E so that E and E are the circle at E and E and E are the circle at E and E and E are the circle at E and E are t

Copy or trace the diagram into your writing booklet.

- (i) Show that $\triangle APG$ and $\triangle BPE$ are similar.
- (ii) Show that $EP^2 = FP \times GP$.

End of Question 14

2

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Prove that
$$\sqrt{ab} \le \frac{a+b}{2}$$
, where $a \ge 0$ and $b \ge 0$.

(ii) If $1 \le x \le y$, show that $x(y-x+1) \ge y$.

(iii) Let
$$n$$
 and j be positive integers with $1 \le j \le n$. Prove that

$$\sqrt{n} \leq \sqrt{j(n-j+1)} \leq \frac{n+1}{2}.$$

1

2

1

1

2

(iv) For integers $n \ge 1$, prove that

$$\left(\sqrt{n}\,\right)^n \leq n! \leq \left(\frac{n+1}{2}\right)^n.$$

(b) Let $P(z) = z^4 - 2kz^3 + 2k^2z^2 - 2kz + 1$, where k is real.

Let $\alpha = x + iy$, where x and y are real.

Suppose that α and $i\alpha$ are zeros of P(z), where $\overline{\alpha} \neq i\alpha$.

- (i) Explain why $\bar{\alpha}$ and $-i\bar{\alpha}$ are zeros of P(z).
- (ii) Show that $P(z) = z^2(z-k)^2 + (kz-1)^2$.
- (iii) Hence show that if P(z) has a real zero then $P(z) = (z^2 + 1)(z + 1)^2 \text{ or } P(z) = (z^2 + 1)(z 1)^2.$
- (iv) Show that all zeros of P(z) have modulus 1.
- (v) Show that k = x y.
- (vi) Hence show that $-\sqrt{2} \le k \le \sqrt{2}$.

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) In how many ways can m identical yellow discs and n identical black 1 discs be arranged in a row?
 - (ii) In how many ways can 10 identical coins be allocated to 4 different boxes?
- (b) (i) Show that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ for |x| < 1 and |y| < 1.
 - (ii) Use mathematical induction to prove

$$\sum_{j=1}^{n} \tan^{-1} \left(\frac{1}{2j^2} \right) = \tan^{-1} \left(\frac{n}{n+1} \right)$$

for all positive integers n.

(iii) Find $\lim_{n\to\infty} \sum_{j=1}^n \tan^{-1} \left(\frac{1}{2j^2} \right)$.

Question 16 continues on page 19

Question 16 (continued)

1

3

Let n be an integer where n > 1. Integers from 1 to n inclusive are selected randomly one by one with repetition being possible. Let P(k) be the probability that exactly k different integers are selected before one of them is selected for the second time, where $1 \le k \le n$.

(i) Explain why
$$P(k) = \frac{(n-1)!k}{n^k(n-k)!}$$
.

(ii) Suppose
$$P(k) \ge P(k-1)$$
. Show that $k^2 - k - n \le 0$.

(iii) Show that if
$$\sqrt{n+\frac{1}{4}} > k-\frac{1}{2}$$
 then the integers n and k satisfy 2

$$\sqrt{n} > k-\frac{1}{2}.$$

(iv) Hence show that if 4n+1 is not a perfect square, then P(k) is greatest when k is the closest integer to \sqrt{n} .

You may use part (iii) and also that $k^2 - k - n > 0$ if P(k) < P(k-1).

End of paper

2012 Higher School Certificate Solutions Mathematics Extension 2

SECTION I

Summary							
1	D	4	A	7	A	9	C
2	D	5	C	8	\mathbf{B}	10	В
3	A	6	\mathbf{B}				

1 (D)
$$2z + \overline{w} = 2(5-i) + 2 - 3i$$

= $10 - 2i + 2 - 3i$
= $12 - 5i$.

2 (D)
$$3x^2 - 3y^2y' + 3xy' + 3y = 0$$

 $y'(3x - 3y^2) = -3x^2 - 3y$
 $y' = \frac{-3x^2 - 3y}{3x - 3y^2}$
 $dy \quad x^2 + y$

$$\therefore \frac{dy}{dx} = \frac{x^2 + y}{y^2 - x}$$

$$= \frac{1+2}{4-1} \quad \text{at (1,2)}$$

$$= 1.$$

3 (A) \overline{z} is the reflection of z in the x-axis. $i\overline{z}$ is \overline{z} rotated 90° anticlockwise.

4 (A) By elimination, answers C and D have the x-intercepts changed. The intercepts on the x axis become minimum turning points and not cusps as in B.

5 (C)
$$\alpha\beta\gamma = \frac{1}{2}$$
,
so $\frac{1}{\alpha^3\beta^3\gamma^3} = \frac{1}{(\alpha\beta\gamma)^3}$
= 8.

6 (B)
$$b^2 = a^2 (e^2 - 1)$$
, $a^2 = 6$, $b^2 = 4$
 $e^2 = 1 + \frac{b^2}{a^2}$
 $= 1 + \frac{4}{6}$
 $= \frac{5}{3}$
 $e = \frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{15}}{3}$.

- (A) Vertically, $T \cos \alpha + N = mg$. Horizontally, $T \sin \alpha = mr\omega^2$.
- 8 (B) P'(x) has a double root at x = 1 thus P(x) will have a triple root at x = 1. $P'\left(-\frac{5}{4}\right) = 0$ with the gradients going from negative to positive indicates a local minimum on P(x). This could c the x-axis at x = -2 which would allow an (x+2) factor for P(x).

9 (C)
$$\delta V = 2\pi r y \delta x$$

$$= 2\pi (x+2)x(2-x)\delta x$$
where $r = x+2$ and $y = x(2-x)$.
$$V = 2\pi \int_{0}^{2} x(2-x)(x+2) dx$$
.

10 (B) (A) and (D) are odd functions $\therefore \int_{-a}^{a} f(x) dx = 0.$ (C) is an even function but is below the x-axis. Only (B) is an even function with a positive value.

SECTION II

Question 11

(a)
$$\frac{2\sqrt{5}+i}{\sqrt{5}-i} = \frac{2\sqrt{5}+i}{\sqrt{5}-i} \times \frac{\sqrt{5}+i}{\sqrt{5}+i}$$
$$= \frac{10+2\sqrt{5}i+\sqrt{5}i-1}{5+1}$$
$$= \frac{9+3\sqrt{5}i}{6}$$
$$= \frac{3}{2}+i\frac{\sqrt{5}}{2}.$$

(c) Completing the square gives:

$$x^2 + 4x + 5 = x^2 + 4x + 4 + 1$$

 $= (x+2)^2 + 1$
Thus
 $\int \frac{dx}{x^2 + 4x + 5} = \int \frac{dx}{(x+2) + 1}$
 $= \tan^{-1}(x+2) + C$

(d) (i)
$$z = \sqrt{3} - i$$

 $|z| = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$
 $\arg(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}$

$$\therefore z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$
$$= 2cis\left(-\frac{\pi}{6}\right).$$

(ii)
$$z^9 = (\sqrt{3} - i)^9$$

$$= \left(2\operatorname{cis}\left(-\frac{\pi}{6}\right)\right)^9$$

$$= 2^9\operatorname{cis}\left(-\frac{9\pi}{6}\right) \quad \text{[by DeMoivre]}$$

$$= 512\operatorname{cis}\left(-\frac{3\pi}{2}\right)$$

$$= 0 + i512$$

$$= 512i.$$

(e) Method 1:

$$\int_{0}^{1} \frac{e^{2x}}{e^{2x} + 1} dx = \frac{1}{2} \int_{0}^{1} \frac{2e^{2x}}{e^{2x} + 1} dx$$

$$= \frac{1}{2} \Big[\ln \left(e^{2x} + 1 \right) \Big]_{0}^{1}$$

$$= \frac{1}{2} \Big[\ln \left(e^{2x} + 1 \right) - \ln 2 \Big]$$

$$= \frac{1}{2} \ln \frac{e^{2x} + 1}{2}.$$

OR

Method 2:
Let
$$u = e^{2x}$$
, $du = 2e^{2x}dx$
when $x = 0$, $u = 1$
 $x = 1$, $u = e^2$

$$\int_0^1 \frac{e^{2x}}{e^{2x} + 1} dx = \int_1^{e^2} \frac{\frac{1}{2}du}{u + 1}$$

$$= \left[\frac{1}{2}\ln(u + 1)\right]_1^{e^2}$$

$$= \frac{1}{2}\left[\ln(e^2 + 1) - \ln 2\right]$$

$$= \frac{1}{2}\ln\frac{e^2 + 1}{2}.$$

(ii)

The graph is obtained by multiplying the graphs of y = |x|-1 and y = x

Question 12

(a) Method 1:

Using the substitution $t = \tan \frac{\theta}{2}$

$$\cos \theta = \frac{1-t^2}{1+t^2} \qquad d\theta = \frac{2}{1+t^2} dt$$

$$\int \frac{d\theta}{1-\cos \theta} = \int \frac{1}{\left(1-\frac{1-t^2}{1+t^2}\right)^{1+t^2}} dt$$

$$= \int \frac{2}{\left(1+t^2\right)-\left(1-t^2\right)} dt$$

$$= \int \frac{2}{2t^2} dt$$

$$= \int \frac{dt}{t^2}$$

$$= -\frac{1}{t} + C$$

$$= -\frac{1}{\tan\left(\frac{\theta}{2}\right)} + C$$

$$= -\cot\frac{\theta}{2} + C.$$

OR

Method 2:

$$\int \frac{d\theta}{1 - \cos \theta} = \int \frac{d\theta}{1 - \left(1 - 2\sin^2 \frac{\theta}{2}\right)_1}$$

$$= \int \frac{d\theta}{2\sin^2 \frac{\theta}{2}}$$

$$= \frac{1}{2} \int \csc^2 \frac{\theta}{2} d\theta$$

$$= -\cot \frac{\theta}{2} + C.$$

using $\int \csc^2 x dx = -\cot x$

(b) (i)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{2x}{a^2} \cdot \frac{b^2}{2y}$$
$$\frac{dy}{dx} = -\frac{b^2x}{a^2y}$$

The gradient at $P(x_0, y_0)$ is $-\frac{b^2 x_0}{a^2 y_0}$ The equation of the tangent at $P(x_0, y_0)$ is $y - y_0 = -\frac{b^2 x_0}{a^2 y_0}(x - x_0)$ as required.

(ii) For the normal at P $m_N = \frac{a^2 y_0}{b^2 x_0}$ $y - y_0 = \frac{a^2 y_0}{b^2 x_0} (x - x_0)$ when y = 0, $-b^2 x_0 y_0 = a^2 y_0 (x - x_0)$ $-b^2 x_0 = a^2 (x - x_0)$ $-b^2 x_0 = a^2 x - a^2 x_0$ $a^2 x = a^2 x_0 - b^2 x_0$

$$x = \frac{a^2 x_0 - b^2 x_0}{a^2}$$

$$= \frac{x_0 \left(a^2 - b^2\right)}{a^2} \quad \text{but } a^2 e^2 = a^2 - b^2$$

$$= x_0 e^2 \quad \text{as required.}$$

(iii) At T put
$$y = 0$$
 so
$$0 - y_0 = -\frac{b^2 x_0}{a^2 y_0} (x - x_0)$$
$$a^2 y_0^2 = b^2 x_0 x - b^2 x_0^2$$
$$b^2 x_0 x = b^2 x_0^2 + a^2 y_0^2$$
$$x = \frac{b^2 x_0^2 + a^2 y_0^2}{b^2 x_0}$$

But since $P(x_0, y_0)$ lies on the tangent

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1 \Rightarrow b^2 x_0^2 + a^2 y_0^2 = a^2 b^2$$
So $OT = x = \frac{a^2 b^2}{b^2 x_0} = \frac{a^2}{x_0}$
Now $ON \times OT = x_0 e^2 \times \frac{a^2}{x_0}$

$$= a^2 e^2$$

Noting that the coordinates of S are (ae,0).

- Using integration by parts: Let $u = (\ln x)^n$ and v' = 1 $u' = n(\ln x)^{n-1} \qquad v = x$ $I_n = \int_1^{\epsilon^2} 1 \cdot (\ln x)^n dx$ $= \left[x(\ln x)^n \right]_1^{\epsilon^2} - n \int_1^{\epsilon^2} (\ln x)^{n-1} dx$ $= \left[e^2 \left(\ln e^2 \right)^n - 1 \cdot \ln 1 \right] - n I_{n-1}$ $= \left[e^2 (2)^n - 1 \times 0 \right] - n I_{n-1}$ $= e^2 2^n - n I_{n-1}.$
- (d) (i) $\overline{A_1B_1} = \overline{A_1P}$ rotate 90° anticlockwise $w_1 u_1 = (z u_1)i$ $w_1 = u_1 + i(z u_1)$ as required.

(ii)
$$\overline{A_2P} = \overline{A_2B_2} \text{ rotate } 90^{\circ} \text{ anticlockwise}$$

$$z - u_2 = (w_2 - u_2)i$$

$$z - u_2 + iu_2 = iw_2$$

$$-w_2 = iz - iu_2 - u_2$$

$$w_2 = u_2 + iu_2 - iz$$

$$w_2 = u_2 + i(u_2 - z)$$
The midpoint of B_1B_2 as P varies is:
$$\frac{w_1 + w_2}{2} = \frac{u_1 + i(z - u_1) + u_2 + i(u_2 - z)}{2}$$

$$= \frac{u_1 + u_2}{2} + \frac{(u_2 - u_1)}{2}i$$
which is a fixed point.

Question 13

(a) (i)
$$\frac{dv}{dt} = 10 - \frac{v^2}{40} = \frac{400 - v^2}{40}$$

$$\int \frac{40 \, dv}{400 - v^2} = \int dt$$

$$t = \int \frac{40}{400 - v^2} \, dv$$

$$= \int \frac{40}{(20 - v)(20 + v)} \, dv$$

$$= \int \frac{1}{20 + v} \, dv - \int \frac{-1}{20 - v} \, dv$$

$$= \left[\ln(20 + v) - \ln(20 - v)\right] + C$$

$$= \ln\left(\frac{20 + v}{20 - v}\right) + C$$
But $t = 0, v = 0$

$$0 = \ln\left(\frac{20 + 0}{20 - 0}\right) + C$$

$$C = \ln 1 = 0$$

$$\therefore t = \ln\left(\frac{20 + v}{20 - v}\right)$$

$$e^t = \frac{20 + v}{20 - v}$$

$$20e^t - ve^t = 20 + v$$

$$ve^t + v = 20e^t - 20$$

$$v(e^t + 1) = 20(e^t - 1)$$

$$v = \frac{20(e^t - 1)}{e^t + 1} \text{ as required.}$$

(ii)
$$v \frac{dv}{dx} = \frac{400 - v^2}{40}$$
$$\frac{40v \, dv}{400 - v^2} = dx$$
$$\int \frac{40v \, dv}{400 - v^2} = \int dx$$
$$x = -20 \int \frac{-2v}{400 - v^2} \, dv$$
$$= -20 \ln(400 - v^2) + C$$
But $x = 0, v = 0$
$$0 = -20 \ln(400 - 0) + C$$
$$C = 20 \ln 400$$
$$x = -20 \ln(400 - v^2) + 20 \ln 400$$

as required.

(iii) Put
$$t = 4$$
 in v

$$v = \frac{20(e^4 - 1)}{e^4 + 1}$$
Now put this in for v to find x

$$x = 20 \log_e \left(\frac{400}{400 - v^2} \right)$$

$$= 20 \log_e \left(\frac{400}{400 - \left[\frac{20(e^4 - 1)}{e^4 + 1} \right]^2} \right)$$

$$= 20 \log_e \left(\frac{(e^4 + 1)^2}{(e^4 + 1)^2 - (e^4 - 1)^2} \right)$$

$$= 20 \log_e \left(\frac{(e^4 + 1)^2}{4e^4} \right)$$

$$= 20 \log_e \left(\frac{(e^4 + 1)^2}{(2e^2)^2} \right)$$

$$= 40 \log_e \left(\frac{(e^4 + 1)^2}{(2e^2)^2} \right)$$

$$= 40 \log_e \left(\frac{(e^4 + 1)^2}{(2e^2)^2} \right)$$

$$\approx 53 \text{ m} \quad \text{(nearest metre)}$$

- (i) $\angle S'PQ = \angle PRS$ (corresponding $\angle 's PQ \parallel RS$) $\angle QPS = \angle PSR$ (alternate $\angle 's PQ \parallel RS$) Now $\angle PRS = \angle PSR = \alpha$ These are equal base angles of $\triangle PSR$ $\therefore \triangle PSR$ is isosceles $\therefore PS = PR$ as required.
- (ii) $\frac{QS'}{QS} = \frac{PS'}{PR} \left(\text{parallel lines cut off equal ratios on all transversals} \right)$ But PS = PR from (i) $\frac{QS'}{QS} = \frac{PS'}{PS}$ $\therefore \frac{PS}{QS} = \frac{PS'}{QS'} \text{ as required.}$
- (i) The equation of the directrix is $x = \frac{a}{e}$ Let M be the point $\left(\frac{a}{e}, b \tan \theta\right)$. $PM = a \sec \theta \frac{a}{e}$ $= a \left(\sec \theta \frac{1}{e}\right)$ SP = ePM $= ea \left(\sec \theta \frac{1}{e}\right)$ $= a \left(\sec \theta 1\right)$.

(ii)
$$\frac{PS}{QS} = \frac{PS'}{QS'} \text{ from (b)(ii)}$$

$$\frac{a(e \sec \theta - 1)}{ae - x} = \frac{a(e \sec \theta + 1)}{ae + x}$$

$$\frac{(e \sec \theta - 1)}{ae - x} = \frac{(e \sec \theta + 1)}{ae + x}$$

$$ae^2 \sec \theta + xe \sec \theta - ae - x =$$

$$ae^2 \sec \theta - xe \sec \theta + ae - x$$

$$2xe \sec \theta = 2ae$$
$$x = \frac{a}{\sec \theta}$$

(iii) Gradient of
$$PQ$$
 is:
$$m_{PQ} = \frac{b \tan \theta}{a \sec \theta - \frac{a}{\sec \theta}}$$

$$= \frac{b \tan \theta \sec \theta}{a (\sec^2 \theta - 1)}$$

$$= \frac{b \tan \theta \sec \theta}{a \tan^2 \theta}$$

$$= \frac{b \sec \theta}{a \tan \theta}$$

$$\therefore PQ \text{ is the tangent at } P.$$

Question 14

(a) Using partial fractions $\frac{3x^2 + 8}{x(x^2 + 4)} = \frac{a}{x} + \frac{bx + c}{x^2 + 4}$ $3x^2 + 8 = a(x^2 + 4) + (bx + c)x$ $= ax^2 + 4a + bx^2 + cx$ $= (a + b)x^2 + cx + 4a$ Equating co-efficients. c = 0and 4a = 8 a = 2also a + b = 0 2 + b = 3 b = 1 $\int \frac{3x^2 + 8}{x(x^2 + 4)} dx = \int \frac{2}{x} dx + \int \frac{x}{x^2 + 4} dx$ $= 2 \ln x + \frac{1}{2} \ln(x^2 + 4) + C.$

(b) (i)
$$y = \frac{x-1}{x(2x-3)}$$

Asymptotes are $x = 0, x = \frac{3}{2}, y = 0$
x-intercept is 1.

(ii) Using long division: $\frac{2x-1}{x-1}$ $\frac{2x^2-2x}{-x+0}$ $\frac{-x+1}{-1}$ Now $y = \frac{x(2x-3)}{x-1}$ $= 2x-1-\frac{1}{x-1}$ The equation of ℓ is y = 2x-1.

(c) Let the dimensions of the rectangular slice be x and y. Let the distance from the back be z. From the top:

Similar triangles: $\frac{x}{a} = \frac{z}{r} \Rightarrow x = \frac{az}{r}$ From the front:

Using Pythagoras' Theorem:

$$y = \sqrt{r^2 - z^2}$$

Area of slice = $xy = \frac{az}{r} \sqrt{r^2 - z^2}$

$$V = \lim_{\delta z \to 0} \sum_{z=0}^{r} \frac{az}{r} \sqrt{r^2 - z^2} \, \delta z$$
$$= \int_{0}^{r} \frac{az}{r} \sqrt{r^2 - z^2} \, dz$$

$$= \frac{a}{\pi} \int_0^r z(r^2 - z^2)^{\frac{1}{2}} dz$$

Let
$$u^2 = r^2 - z^2$$

$$2u\,du = -2z\,dz$$

$$-u du = z dz$$

If z = 0 then $u^2 = r^2 - 0^2 \implies u = r \quad (r > 0)$

If z = r then $u^2 = r^2 - r^2 \Rightarrow u = 0$

$$V = \frac{a}{r} \int_{r}^{0} -u \times u du$$

$$= -\frac{a}{r} \left[\frac{u^3}{3} \right]_r^0$$

$$=\frac{ar^2}{3}$$
 units³

$$\therefore \text{Volume} = \frac{ar^2}{3} \text{units}^3.$$

(d) (i)

In $\triangle APG$ and $\triangle BPE$

 $\angle AGP = \angle BEP$ (given 90°)

 $\angle GAP = \angle EBP$ (alternate segment thm)

 $\triangle APG \parallel \triangle BPE$ (equiangular)

(ii) Similarly ΔΑΡΕΙΙΙΔΒΡF

 $\frac{GP}{EP} = \frac{AP}{BP} \text{ matching sides } \Delta APG \parallel \Delta BPE$

 $\frac{AP}{BP} = \frac{EP}{FP}$ matching sides $\triangle APE \parallel \mid \triangle BPF$

$$\therefore \frac{GP}{EP} = \frac{EP}{FP}$$

$$\therefore EP^2 = FP \times GP \text{ as required.}$$

Question 15

(a) (i) $(a-b)^2 \ge 0$ $a^2 - 2ab + b^2 \ge 0$ $a^2 + 2ab + b^2 \ge 4ab$ $(a+b)^2 \ge 4ab$ $(a+b) \ge 2\sqrt{ab}$ $\sqrt{ab} \le \frac{a+b}{2} .$

(ii) Given $1 \le x \le y$ then $y \ge x$ $y(x-1) \ge x(x-1)$ since $x-1 \ge 0$ $yx-y \ge x^2-x$ $yx-x^2+x \ge y$ $x(y-x+1) \ge y$ as required.

(iii) Put x = j and y = n into (ii) $j(n - j + 1) \ge n$ $\sqrt{n} \le \sqrt{j(n - j + 1)} \text{ since } 1 \le j \le n$ $\sqrt{j(n - j + 1)} \le \frac{j + n - j + 1}{2} \text{ using (i)}$ $\le \frac{n + 1}{2}$ $\therefore \sqrt{n} \le \sqrt{j(n - j + 1)} \le \frac{n + 1}{2} \text{ as required.}$

(iv) Using (iii): $\operatorname{Put} j = 1 : \sqrt{n} \leq \sqrt{1(n)} \leq \frac{n+1}{2}$ $\operatorname{Put} j = 2 : \sqrt{n} \leq \sqrt{2(n-1)} \leq \frac{n+1}{2}$ $\operatorname{Put} j = 3 : \sqrt{n} \leq \sqrt{3(n-2)} \leq \frac{n+1}{2}$ and so on $\operatorname{Put} j = n : \sqrt{n} \leq \sqrt{n} \leq \frac{n+1}{2}$ Multiplying all these terms together

$$\left(\sqrt{n}\right)^n \le \sqrt{n!n!} \le \left(\frac{n+1}{2}\right)^n$$

$$\left(\sqrt{n}\right)^n \le n! \le \left(\frac{n+1}{2}\right)^n \quad \text{as required.}$$

(b) (i) Note that: $i\alpha = i(x+iy)$ = ix - y = -y - ix = -i(x-iy) $= -i\overline{\alpha}$

Since the coefficients are real, the zeros must occur in conjugate pairs. Thus if α and $i\alpha$ are zeros then their conjugates, namely $\overline{\alpha}$ and $-i\overline{\alpha}$, must also be zeros.

(ii)
$$P(z) = z^4 - 2kz^3 + 2k^2z^2 - 2kz + 1$$
$$= z^4 - 2kz^3 + k^2z^2 + k^2z^2 - 2kz + 1$$
$$= z^2(z^2 - 2kz + k^2) + (kz)^2 - 2kz + 1$$
$$= z^2(z - k)^2 + (kz - 1)^2.$$

(iii) If P(z) has a real zero then $z^{2}(z-k)^{2} + (kz-1)^{2} = 0 \text{ factorises.}$ Since $z \neq 0$, $(z-k)^{2} = 0 \Rightarrow z = k$,
and $(kz-1)^{2} = 0 \Rightarrow kz = 1 \Rightarrow k^{2} = 1$ Hence $k = \pm 1$ $\therefore z^{2}(z-1)^{2} + (z-1)^{2} = 0$ $(z^{2}+1)(z-1)^{2} = 0$ or $z^{2}(z+1)^{2} + (-z-1)^{2} = 0$ $z^{2}(z+1)^{2} + (z+1)^{2} = 0$ $(z^{2}+1)(z+1)^{2} = 0 \text{ as required.}$

(iv) The roots are α , $i\alpha$, $\overline{\alpha}$ and $i\overline{\alpha}$. The product of the roots is: $\frac{e}{a} = \alpha \cdot \overline{\alpha} \cdot i\alpha \cdot -i\overline{\alpha}$ $1 = (\alpha \cdot \overline{\alpha})^2$ $= (|\alpha|^2)^2$ $= |\alpha|^4$

 $|\alpha|=1$.

Also from (iii), the zeros are 1, 1, i, -i or -1, -1, i, -i and these also have a modulus of 1.

(v) Using the sum of the roots: $\sum \alpha = \alpha + \overline{\alpha} + i\alpha - i\overline{\alpha}$ $-\frac{b}{a} = (x+iy) + (x-iy)$ + (-y+ix) + (-ix-y) 2k = 2x-2y $\therefore k = x-y \text{ as required.}$

(vi)
$$(x-y)^2 = x^2 - 2xy + y^2$$

 $(x+y)^2 = x^2 + 2xy + y^2$
 $|\alpha|=1 \implies x^2 + y^2 = 1$
 $k^2 = (x-y)^2$ from (v)
 $= x^2 + y^2 - 2xy$
 $= x^2 + y^2 - ((x+y)^2 - x^2 - y^2)$
 $= 2(x^2 + y^2) - (x+y)^2$
 $= 2 - (x+y)^2$ since $x^2 + y^2 = 1$
 ≤ 2 since $(x+y)^2 \ge 0$
 $\therefore -\sqrt{2} \le k \le \sqrt{2}$ as required.

Ouestion 16

(a) (i) By definition $\frac{(m+n)!}{m!n!}$.

10 coins in 4 boxes means various groups of coins adding up to 10 placed inside the 4 boxes with spaces between each box.

Using part i) m(coins) = 10 n(spaces) = 3 $\frac{(m+n)!}{m!n!} = \frac{13!}{10!3!} = 286.$

(b) (i) Method 1: Let $A = \tan^{-1} x$, $B = \tan^{-1} y$ $\therefore x = \tan A$, $y = \tan B$