

2001
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- · All questions are of equal value

Total marks – 84 Attempt Questions 1–7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.

(a) Use the table of standard integrals to find the exact value of

$$\int_0^2 \frac{dx}{\sqrt{16 - x^2}}$$

(b) Find $\frac{d}{dx}(x\sin^2 x)$.

(c) Evaluate $\sum_{n=4}^{7} (2n+3)$.

(d) Let A be the point (-2, 7) and let B be the point (1, 5). Find the coordinates of the point P which divides the interval AB externally in the ratio 1:2.

(e) Is x+3 a factor of $x^3-5x+12$? Give reasons for your answer.

(f) Use the substitution u=1+x to evaluate 3

 $15\int_{-1}^{0} x\sqrt{1+x} \ dx.$

2

(a) Let $f(x) = 3x^2 + x$. Use the definition

2

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

to find the derivative of f(x) at the point x = a.

ز

(b) Find

$$(i) \int \frac{e^x}{1+e^x} dx$$

$$(ii) \quad \int_0^\pi \cos^2 3x \, dx.$$

- (c) The letters A, E, I, O, and U are vowels.
 - (i) How many arrangements of the letters in the word ALGEBRAIC are possible?
 - (ii) How many arrangements of the letters in the word ALGEBRAIC are possible if the vowels must occupy the 2nd, 3rd, 5th and 8th positions?
- (d) Find the term independent of x in the binomial expansion of 3

$$\left(x^2 - \frac{1}{x}\right)^9.$$

Marks

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) The function $f(x) = \sin x + \cos x - x$ has a zero near x = 1.2

3

Use one application of Newton's method to find a second approximation to the zero. Write your answer correct to three significant figures.

(b)

Two circles, C_1 and C_2 , intersect at points A and B. Circle C_1 passes through the centre O of circle C_2 . The point P lies on circle C_2 so that the line PAT is tangent to circle C_1 at point A. Let $\angle APB = \theta$.

Copy or trace the diagram into your writing booklet.

(i) Find $\angle AOB$ in terms of θ . Give a reason for your answer.

1

(iii) Deduce that PA = BA.

Explain why $\angle TAB = 2\theta$.

2

2

1

(c) Starting from the identity $\sin(\theta + 2\theta) = \sin\theta\cos2\theta + \cos\theta\sin2\theta$, and using the double angle formulae, prove the identity

 $\sin 3\theta = 3\sin\theta - 4\sin^3\theta.$

(ii) Hence solve the equation

3

 $\sin 3\theta = 2\sin \theta$ for $0 \le \theta \le 2\pi$.

3

(a) Solve $\frac{3x}{x-2} \le 1$.

(b) An aircraft flying horizontally at $V \, \text{m s}^{-1}$ releases a bomb that hits the ground 4000 m away, measured horizontally. The bomb hits the ground at an angle of 45° to the vertical.

Assume that, t seconds after release, the position of the bomb is given by

$$x = Vt$$
, $y = -5t^2$.

Find the speed V of the aircraft.

(c) A particle, whose displacement is x, moves in simple harmonic motion. 5

Find x as a function of t if

$$\ddot{x} = -4x$$

and if x=3 and $\dot{x}=-6\sqrt{3}$ when t=0.

Marks

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a)

The sketch shows the graph of the curve y = f(x) where $f(x) = 2\cos^{-1}\frac{x}{3}$. The area under the curve for $0 \le x \le 3$ is shaded.

(i) Find the y intercept.

1

2

(ii) Determine the inverse function $y = f^{-1}(x)$, and write down the domain D of this inverse function.

2

(iii) Calculate the area of the shaded region.

(b) By using the binomial expansion, show that

3

$$(q+p)^n - (q-p)^n = 2\binom{n}{1}q^{n-1}p + 2\binom{n}{3}q^{n-3}p^3 + \cdots$$

What is the last term in the expansion when n is odd? What is the last term in the expansion when n is even?

,

c) A fair six-sided die is randomly tossed n times.

(i) Suppose $0 \le r \le n$. What is the probability that exactly r 'sixes' appear in the uppermost position?

2

2

(ii) By using the result of part (b), or otherwise, show that the probability that an odd number of 'sixes' appears is

$$\frac{1}{2}\left\{1-\left(\frac{2}{3}\right)^n\right\}.$$

3

1

(a) Prove by induction that

$$n^3 + (n+1)^3 + (n+2)^3$$

is divisible by 9 for n = 1, 2, 3, ...

(b)

Consider the variable point $P(2at, at^2)$ on the parabola $x^2 = 4ay$.

- (i) Prove that the equation of the normal at P is $x + ty = at^3 + 2at$.
- (ii) Find the coordinates of the point Q on the parabola such that the normal at Q is perpendicular to the normal at P.
- (iii) Show that the two normals of part (ii) intersect at the point R, whose coordinates are

$$x = a\left(t - \frac{1}{t}\right), \quad y = a\left(t^2 + 1 + \frac{1}{t^2}\right).$$

(iv) Find the equation in Cartesian form of the locus of the point R given in part (iii).

Marks

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) A particle moves in a straight line so that its acceleration is given by

$$\frac{dv}{dt} = x - 1$$

where v is its velocity and x is its displacement from the origin.

Initially, the particle is at the origin and has velocity v = 1.

(i) Show that $v^2 = (x-1)^2$.

- 2
- (ii) By finding an expression for $\frac{dt}{dx}$, or otherwise, find x as a function of t.

Ouestion 7 continues on page 9

Question 7 (continued)

(b)

Consider the diagram, which shows a vertical tower OT of height h metres, a fixed point A, and a variable point P that is constrained to move so that angle AOP is $\frac{\pi}{3}$ radians. The angle of elevation of T from A is $\frac{\pi}{4}$ radians.

Let the angle of elevation of T from P be α radians and let angle ATP be θ radians.

- (i) By considering triangle AOP, show that $AP^2 = h^2 + h^2 \cot^2 \alpha h^2 \cot \alpha.$
- (ii) By finding a second expression for AP^2 , deduce that $\cos \theta = \frac{1}{\sqrt{2}} \sin \alpha + \frac{1}{2\sqrt{2}} \cos \alpha.$
- (iii) Sketch a graph of θ for $0 < \alpha < \frac{\pi}{2}$, identifying and classifying any turning points. Discuss the behaviour of θ as $\alpha \to 0$ and as $\alpha \to \frac{\pi}{2}$.

End of paper

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{dx} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

2001 Higher School Certificate Solutions

MATHEMATICS EXTENSION 1

QUESTION 1

(a)
$$\int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}} = \left[\sin^{-1} \frac{x}{4} \right]_{0}^{2}$$
$$= \sin^{-1} \left(\frac{1}{2} \right) - \sin^{-1} 0$$
$$= \frac{\pi}{6} - 0$$
$$= \frac{\pi}{6}.$$

(b)
$$\frac{d}{dx}(x\sin^2 x) = 1 \cdot \sin^2 x + x \cdot 2\sin x \cos x$$
$$= \sin^2 x + 2x \sin x \cos x.$$

(c)
$$\sum_{n=4}^{7} (2n+3) = (2 \times 4 + 3) + (2 \times 5 + 3) + (2 \times 6 + 3) + (2 \times 7 + 3)$$
$$= 11 + 13 + 15 + 17$$
$$= 56.$$

(d)
$$A(-2, 7)$$
 $B(1, 5)$
 $-1:2$
 P has coordinates
 $\left(\frac{2 \times (-2) + (-1) \times 1}{2 - 1}, \frac{2 \times 7 + (-1) \times 5}{2 - 1}\right)$
 $= (-5, 9).$

Alternatively, an external ratio of 1:2 means that PA = AB, and the result can be found easily from a diagram.

(e) Let
$$P(x) = x^3 - 5x + 12$$

 $P(-3) = (-3)^3 - 5(-3) + 12$
 $= 0.$
 $\therefore x + 3 \text{ is a factor of } P(x)$
by the Factor Theorem.

OR
$$x+3$$
 x^2-3x+4 $x^3-5x+12$ x^3+3x^2 x^3+3x^2 x^3-3x^2-5x $x^3-5x+12 = (x+3)(x^2-3x+4)$ ie. $x+3$ is a factor.

$$x = -1 u = 0$$

$$x = 0 u = 1.$$

$$\therefore 15 \int_{-1}^{0} x \sqrt{1 + x} dx$$

$$= 15 \int_{0}^{1} (u - 1) \sqrt{u} du$$

$$= 15 \int_{0}^{1} \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= 15 \left[\frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{1}$$

$$= 15 \left[\left(\frac{2}{5} - \frac{2}{3}\right) - 0\right]$$

$$= -4.$$

Note that the integral is negative

since $x\sqrt{1+x} \le 0$ on the domain

 $-1 \le x \le 0$.

du = dx.

QUESTION 2

(a)
$$f(x) = 3x^{2} + x$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{\left[3(a+h)^{2} + (a+h)\right] - \left(3a^{2} + a\right)}{h}$$

$$= \lim_{h \to 0} \frac{3a^{2} + 6ah + 3h^{2} + a + h - 3a^{2} - a}{h}$$

$$= \lim_{h \to 0} \frac{6ah + 3h^{2} + h}{h}$$

$$= \lim_{h \to 0} \left(6a + 3h + 1\right)$$

$$= 6a + 1$$

(b) (i)
$$\int \frac{e^x}{1+e^x} dx = \ln(1+e^x)+c$$
.

(ii)
$$\int_{0}^{\pi} \cos^{2} 3x \ dx$$

$$= \frac{1}{2} \int_{0}^{\pi} (1 + \cos 6x) \ dx$$

$$= \frac{1}{2} \left[x + \frac{\sin 6x}{6} \right]_{0}^{\pi}$$

$$= \frac{1}{2} \left[\left(\pi + \frac{\sin 6\pi}{6} \right) - \left(0 + \frac{\sin 0}{6} \right) \right]$$

$$= \frac{\pi}{2}.$$

Note $\frac{1}{2} \int_0^{\pi} (1 + \cos 6x) \ dx = \frac{1}{2} \int_0^{\pi} 1 \ dx$, since $\cos 6x$ has a period of $\frac{\pi}{3}$ and the integration is over 3 complete periods.

(c) There are 2As.
The other 7 letters are unique.

(i) The number of arrangements $=\frac{9!}{2!}$ = 181 440.

(ii) The number of arrangements of vowels = $\frac{4!}{2!}$.

The number of arrangements

of consonants = 5!. Total number of arrangements = $\frac{4!}{2!} \times 5!$ = 1440.

(d) In the expansion of $\left(x^2 - \frac{1}{x}\right)^9$, $T_{k+1} = \left(\frac{9}{k}\right) \left(x^2\right)^{9-k} \left(-\frac{1}{x}\right)^k$

$$= \binom{9}{k} (-1)^k x^{18-3k}.$$

For term independent of x, 18-3k=0

∴ Required term =
$$\binom{9}{6}(-1)^6$$

= $\binom{9}{6}$
= 84.

QUESTION 3

a)
$$f(x) = \sin x + \cos x - x$$

 $f'(x) = \cos x - \sin x - 1$
 $f(1\cdot 2) = 0.09439...$
 $f'(1\cdot 2) = -1.56968...$

Let x_2 be a second approximation:

$$x_2 = 1.2 - \frac{f(1.2)}{f'(1.2)}$$
 by Newton's method
= $1.2 - \frac{0.094 \ 39 \dots}{-1.569 \ 68 \dots}$ (
= $1.26 \ (3 \ \text{sig. figs})$.

- (i) $\angle AOB = 2\theta$ (Angle at the centre is twice angle at the circumference standing on the same arc.)
- (ii) ∠TAB is the angle between the tangent to C₁ and the chord AB.
 ∠AOB is the ∠ in the alternate segment.
 ∴ ∠TAB = ∠AOB = 2θ.

(iii)
$$\angle TAB = \angle APB + \angle ABP$$
 (Ext. \angle of a \triangle = sum of int. opp. \angle s) $\therefore \angle ABP = \theta$ $\therefore \angle ABP = \angle APB = \theta$.

 \therefore PA = BA (Sides opp. equal \angle s in a \triangle are equal).

- (c) (i) $\sin(\theta + 2\theta)$ $= \sin\theta\cos 2\theta + \cos\theta\sin 2\theta$ $= \sin\theta(1 - 2\sin^2\theta) + \cos\theta \cdot 2\sin\theta\cos\theta$ $= \sin\theta - 2\sin^3\theta + \cos^2\theta \cdot 2\sin\theta$ $= \sin\theta - 2\sin^3\theta + 2\sin\theta(1 - \sin^2\theta)$ $= 3\sin\theta - 4\sin^3\theta$.
 - (ii) $\sin 3\theta = 2 \sin \theta$, $0 \le \theta \le 2\pi$ $3 \sin \theta - 4 \sin^3 \theta = 2 \sin \theta$ $\sin \theta - 4 \sin^3 \theta = 0$ $\sin \theta (1 - 4 \sin^2 \theta) = 0$ $\sin \theta (1 - 2 \sin \theta) (1 + 2 \sin \theta) = 0$. $\therefore \sin \theta = 0, \frac{1}{2}, -\frac{1}{2}$ $\theta = 0, \pi, 2\pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$. In ascending order, the solutions are $\theta = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}, 2\pi$.

QUESTION 4

(a)
$$\frac{3x}{x-2} \le 1$$

Note $x \ne 2$ since LHS is undefined.
METHOD 1

$$\frac{3x}{x-2} - 1 \le 0$$

$$\frac{2x+2}{x-2} \le 0$$

$$\frac{2(x+1)}{x-2} \times (x-2)^2 \le 0 \times (x-2)^2$$

$$2(x+1)(x-2) \le 0 \quad (x \ne 2).$$

METHOD 2 Use the critical point method Consider $\frac{3x}{x-2} = 1$ $(x \neq 2)$ 3x = x-2x = -1.

Now consider
$$\frac{3x}{x-2} \le 1$$
.
Test $x = -2$: $\frac{-6}{-4} \le 1$ False $x = 0$: $0 \le 1$ True $x = 3$: $\frac{9}{1} \le 1$ False $\frac{9}{1} \le 1$ False

METHOD 3

$$\frac{3x}{x-2} \le 1.$$
If $x-2 < 0$, i.e. $x < 2$, then $3x \ge x-2$

$$x \ge -1$$
, i.e. $-1 \le x < 2$.
If $x-2 > 0$, i.e. $x > 2$, then $3x \le x-2$

$$x \le -1$$
.

- .. No further solutions.
- \therefore The solution is $-1 \le x < 2$.

METHOD 1

$$x = Vt, \quad y = -5t^2.$$

Eliminating the parameter t, $t = \frac{x}{x}$

$$y = -\frac{5x^2}{V^2}$$

$$\frac{dy}{dx} = -\frac{10x}{V^2}$$

Note: The angle between the direction of the bomb when it hits the ground and the positive x axis is 135°.

When
$$x = 4000$$
, $\frac{dy}{dx} = \tan 135^\circ = -1$.

$$\therefore \frac{-10 \times 4000}{V^2} = -1$$

$$V^2 = 40000$$

$$V = 200$$

$$(V > 0, \text{ since it is the speed of the aircraft.})$$

METHOD 2

$$x = Vt \qquad y = -5t^2$$

$$\dot{x} = V \qquad \dot{y} = -10t$$

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = -\frac{10t}{V}.$$
When $x = 4000$, $t = \frac{4000}{V}$ and $\frac{dy}{dx} = -1$.
$$\therefore \qquad -1 = -\frac{10 \times 4000}{V^2}$$

$$V^2 = 40000$$

$$\therefore \qquad V = 200.$$

METHOD 3

An angle of 45° means that the ground is a focal chord. Therefore the plane is flying at an altitude of 4000 + 2 = 2000 m.

Hence the bomb hits the ground at time t, given by:

$$-2000 = -5t^{2} \qquad \text{(from } y = -5t^{2}\text{)}$$

$$t^{2} = 400$$

$$\therefore \qquad t = 20.$$
Substituting $t = 20$, $x = 4000$

$$4000 = 20V \qquad \text{(from } x = Vt\text{)}$$

$$\therefore \qquad V = 200.$$

(c)
$$\ddot{x} = -4x$$

$$= -n^2x$$

$$\therefore n = 2.$$

$$x = \alpha \cos(nt + \alpha).$$

$$\dot{x} = -\alpha n \sin(nt + \alpha).$$
When $t = 0$, $x = 3$

When
$$t = 0$$
, $\dot{x} = -6\sqrt{3}$
 $-6\sqrt{3} = -2a \sin \alpha$
 $a \sin \alpha = 3\sqrt{3}$. —2

$$\tan \alpha = \frac{3\sqrt{3}}{3} = \sqrt{3}$$

Substitute in ①:
$$3 = a \cos \frac{\pi}{3}$$

$$a = 6$$

$$\therefore x = 6 \cos \left(2t + \frac{\pi}{3}\right)$$

Also correct are
$$x = 6 \sin \left(2t + \frac{5\pi}{6}\right)$$

and $x = 3 \cos 2t - 3\sqrt{3} \sin 2t$.

QUESTION 5

(a) (i)
$$y = 2\cos^{-1}\frac{x}{3}$$

 $x = 0$, $y = 2\cos^{-1}0$
 $= 2 \times \frac{\pi}{2}$
 $= \pi$.

 \therefore The y intercept = π .

(ii) For the inverse,
$$x = 2\cos^{-1}\frac{y}{3}$$

 $\frac{y}{3} = \cos\frac{x}{2}$
 $y = 3\cos\frac{x}{2}$
 $\therefore f^{-1}(x) = 3\cos\frac{x}{2}$.

Since the range of y = f(x) is $0 \le y \le 2\pi$, the domain of $y = f^{-1}(x)$ is $0 \le x \le 2\pi$.

(iii)
$$A = \int_0^{\pi} x \, dy$$
$$= \int_0^{\pi} 3 \cos \frac{y}{2} \, dy$$
$$= 6 \left[\sin \frac{y}{2} \right]_0^{\pi}$$
$$= 6 \left(\sin \frac{\pi}{2} - \sin 0 \right)$$
$$= 6.$$

.. The area is 6 square units.

(b)
$$(q+p)^n - (q-p)^n$$

$$= \left[q^n + \binom{n}{1}q^{n-1}p + \binom{n}{2}q^{n-2}p^2 + \binom{n}{3}q^{n-3}p^3 + \cdots + p^n\right] - \left[q^n - \binom{n}{1}q^{n-1}p + \binom{n}{2}q^{n-2}p^2 + \binom{n}{3}q^{n-3}p^3 + \cdots + (-1)^np^n\right]$$

$$= 2\left[\binom{n}{1}q^{n-3}p^3 + \cdots + (-1)^np^n\right]$$

$$= 2\left[\binom{n}{1}q^{n-1}p + \binom{n}{3}q^{n-3}p^3 + \cdots\right]$$

$$\therefore (q+p)^n - (q-p)^n$$

$$= 2\binom{n}{1}q^{n-1}p + 2\binom{n}{3}q^{n-3}p + \cdots$$

If n is odd, $(-1)^n p^n$ is negative,

 \therefore last term is $2\binom{n}{n}p^n=2p^n$.

If n is even, $(-1)^n p^n$ is positive,

 $\therefore \text{ last term is } 2\binom{n}{n-1}qp^{n-1} = 2nqp^{n-1}.$

- (c) (i) $\left(\frac{5}{6} + \frac{1}{6}\right)^n$ is the binomial probability function, since probability of a six = $\frac{1}{2}$.
 - .. Probability of exactly r sixes.

$$P(r) = \binom{n}{r} \left(\frac{5}{6}\right)^{n-r} \left(\frac{1}{6}\right)^{r}.$$

(ii) Probability of an odd number of sixes $= P(1) + P(3) + P(5) + \cdots$ $= \binom{n}{1} \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right) + \binom{n}{3} \left(\frac{5}{6}\right)^{n-3} \left(\frac{1}{6}\right)^{3} + \cdots$ $=\frac{1}{2}\left|\left(\frac{5}{6}+\frac{1}{6}\right)^n-\left(\frac{5}{6}-\frac{1}{6}\right)^n\right|,$ from (b), $= \frac{1}{2} \left| 1 - \left(\frac{2}{3} \right)^n \right|.$

Note that the expression in (b) doubles up on probabilities for r odd and omits probabilities for r even.

Hence it was applicable to this question.

QUESTION 6

(a) Let S(n) be the statement that $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9.

For
$$n = 1$$
, $n^3 + (n+1)^3 + (n+2)^3$
= $1^3 + 2^3 + 3^3$
= 36, which is divisible by 9.

- S(1) is true.
- Assume S(k) is true,
- $k^3 + (k+1)^3 + (k+2)^3$
 - = 9M, where M is an integer.

Consider the case when n = k + 1:

$$(k+1)^3 + (k+2)^3 + (k+3)^3$$

$$= (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27$$

$$= \left[(k+1)^3 + (k+2)^3 + k^3 \right] + 9k^2 + 27k +$$

- $=9M+9k^2+27k+27$
- = $9(M + k^2 + 3k + 3)$, which is divisible by 9, since $M + k^2 + 3k + 3$ is an integer.
- S(k+1) is true when S(k) is true.

But the result is true when n = 1, hence it is true when n = 2, and so by mathematical induction the result is true for n = 1, 2, 3, ...

(b) (i)
$$x^2 = 4ay$$

$$y = \frac{x^2}{4a}$$

$$\frac{dy}{dx} = \frac{x}{2a}$$

- At P, $\frac{dy}{dx} = \frac{2at}{2a} = t$.
- Gradient of normal = $-\frac{1}{2}$
- Equation of normal is

$$y - at^2 = -\frac{1}{t}(x - 2at)$$
$$ty - at^3 = -x + 2at$$

- $x + ty = at^3 + 2at$
- (ii) At $Q(2aq, aq^2)$, gradient of normal is t. Also at $Q(2aq, aq^2)$, gradient of normal

$$1S - \frac{1}{q}.$$

$$\therefore \qquad t = -\frac{1}{q}$$

- $\therefore Q \text{ is } \left(-\frac{2a}{t}, \frac{a}{t^2}\right).$
- (iii) Normal at P: $x + ty = at^3 + 2at$ Normal at Q: $x - \frac{1}{t}y = -\frac{\alpha}{t^3} - \frac{2\alpha}{t}$
 - $tx + t^2 y = at^4 + 2at^2$ —(3)
 - $t^3x t^2y = -a 2at^2$ (4) $2 \times t^3$:

$$(t+t^3)x = a(t^4-1)$$

$$t(t^{2}+1)x = \alpha(t^{2}+1)(t^{2}-1)$$
$$x = \frac{\alpha(t^{2}-1)}{2}$$

$$x = a\left(t - \frac{1}{t}\right).$$

Substitute in 1:

$$a\left(t - \frac{1}{t}\right) + ty = at^3 + 2at$$

$$ty = at^3 + at + \frac{a}{t}$$

$$y = a\left(t^2 + 1 + \frac{1}{t^2}\right)$$

$$\therefore x = a\left(t - \frac{1}{t}\right), \quad y = a\left(t^2 + 1 + \frac{1}{t^2}\right).$$

(iv) Parametric equations of the locus of R are $x = a\left(t - \frac{1}{t}\right)$ $\int y = a \left(t^2 + 1 + \frac{1}{t^2} \right)$

From (5):
$$x^2 = a^2 \left(t^2 - 2 + \frac{1}{t^2} \right)$$

= $a^2 \left(t^2 + 1 + \frac{1}{t^2} \right) - 3a^2$.

 $\therefore x^2 = ay - 3a^2$ is the Cartesian equation

QUESTION 7

 $\frac{dv}{dx} = x - 1$ (a) (i) $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = x - 1.$

Integrating, $\frac{1}{2}v^2 = \frac{x^2}{2} - x + c$.

When x = 0, v = 1:

$$\frac{1}{2} = c$$

$$\frac{1}{2}v^2 = \frac{x^2}{2} - x + \frac{1}{2}$$

- $v^2 = (x-1)^2$
- (ii) $\therefore v = \pm (x-1)$ But if x = 0, y = 1.

$$v = -(x-1)$$

$$v = 1 - x$$

$$\frac{dx}{dt} = 1 - x$$

$$\frac{dt}{dx} = \frac{1}{1-x}$$

$$t = \int \frac{1}{1-x} dx$$

$$= -\log_e(1-x) + c_1.$$

When
$$t = 0$$
, $x = 0$,
$$0 = -\log_e 1 + c_1$$

$$c_1 = 0
 t = -\log_e(1-x)$$

$$\therefore \qquad x = 1 - e^{-t}.$$

Checks:
$$\frac{dx}{dt} = e^{-t} = 1 - x$$
.

$$\frac{dv}{dt} = -e^{-t} = x - 1.$$

(b) (i) In $\triangle AOP$, $AP^{2} = OA^{2} + OP^{2} - 2OA \cdot OP \cos \frac{\pi}{2}$.

From
$$\triangle AOT$$
, $AO = h$.

From
$$\triangle POT$$
, $\tan \alpha = \frac{h}{OP}$

$$\therefore \qquad OP = h \cot \alpha.$$

$$\therefore AP^2 = h^2 + h^2 \cot^2 \alpha - 2h \cdot h \cdot \cot \alpha \cdot \frac{1}{2}$$

$$\therefore AP^2 = h^2 + h^2 \cot^2 \alpha - h^2 \cot \alpha.$$

(ii) In $\triangle ATP$ $AP^2 = AT^2 + PT^2 - 2AT \cdot PT \cos \theta$

In
$$\triangle AOT$$
, $AT^2 = h^2 + h^2$

$$AT^2 = 2h^2.$$

In
$$\triangle POT$$
, $PT^2 = h^2 + h^2 \cot^2 \alpha$

$$\therefore PT^2 = h^2 \csc^2 \alpha.$$

 $\therefore AP^2 = 2h^2 + h^2 + h^2 \cot^2 \alpha$ $-2\sqrt{2}h \cdot h \csc \alpha \cdot \cos \theta$ $\therefore AP^2 = 3h^2 + h^2 \cot^2 \alpha$

 $-2\sqrt{2}h^2$ cosec $\alpha \cdot \cos \theta$. Equating expressions for AP2

 $h^2 + h^2 \cot^2 \alpha - h^2 \cot \alpha$ $= 3h^2 + h^2 \cot^2 \alpha - 2\sqrt{2} h^2 \csc \alpha \cdot \cos \theta$

 $2\sqrt{2}h^2 \csc \alpha \cos \theta = 2h^2 + h^2 \cot \alpha$

 $2\sqrt{2}\cos\theta = 2\sin\alpha + \cos\alpha$

 $\therefore \qquad \cos\theta = \frac{1}{\sqrt{2}}\sin\alpha + \frac{1}{2\sqrt{2}}\cos\alpha.$

(iii) $\theta = \cos^{-1} \left(\frac{1}{\sqrt{2}} \sin \alpha + \frac{1}{2\sqrt{2}} \cos \alpha \right)$

At stationary points, $\frac{d\theta}{d\alpha} = 0$.

 $\frac{1}{2\sqrt{2}}\sin\alpha - \frac{1}{\sqrt{2}}\cos\alpha = 0$ $\sin \alpha - 2\cos \alpha = 0$

 $\tan \alpha = 2$ $\alpha = \tan^{-1} 2$ $\alpha \neq 1.107$

 $\theta = \cos^{-1}\left(\frac{1}{\sqrt{2}} \cdot \frac{2}{\sqrt{5}} + \frac{1}{2\sqrt{2}} \cdot \frac{1}{\sqrt{5}}\right)$ $= \cos^{-1} \left(\frac{\sqrt{10}}{5} + \frac{\sqrt{10}}{20} \right)$

Stationary point at $\left(\tan^{-1} 2, \cos^{-1} \frac{\sqrt{10}}{4}\right)$

 $\left. \begin{array}{ll} \text{If } \alpha < \tan^{-1} 2, & \frac{d\theta}{d\dot{\alpha}} < 0 \\ \\ \text{If } \alpha > \tan^{-1} 2, & \frac{d\theta}{d\alpha} > 0 \end{array} \right\} \text{for } 0 < \alpha < \frac{\pi}{2}.$

:. Minimum turning point at $\left(\tan^{-1} 2, \cos^{-1} \frac{\sqrt{10}}{4}\right)$

If
$$\alpha = 0$$
, $\theta = \cos^{-1} \frac{1}{2\sqrt{2}}$ ($\frac{1}{7}$ 1·209).
If $\alpha = \frac{\pi}{2}$, $\theta = \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$.
As $\alpha \to 0$, $\theta \to \cos^{-1} \frac{1}{2\sqrt{2}}$.
As $\alpha \to \frac{\pi}{2}$, $\theta \to \frac{\pi}{4}$.

In an alternative approach to this question, we can write $\frac{1}{\sqrt{2}}\sin\alpha + \frac{1}{2\sqrt{2}}\cos\alpha$ in the

form $a\cos(\alpha-\phi)$, leading to

$$\theta = \cos^{-1} \left[\frac{\sqrt{10}}{4} \cos \left(\alpha - \tan^{-1} 2 \right) \right].$$

 θ then has a minimum when $\cos(\alpha - \tan^{-1} 2)$ has a maximum.

This occurs when

$$\cos(\alpha - \tan^{-1} 2) = 1$$

$$\alpha = \tan^{-1} 2$$

$$\theta = \cos^{-1} \frac{\sqrt{10}}{4}$$

END OF MATHEMATICS EXTENSION 1 SOLUTIONS