

BRIGIDINE COLLEGE RANDWICK

PRELIMINARY **EXTENSION 1** MATHEMATICS

HALF YEARLY

2009

(TIME - 1 HOUR)

Directions to candidates

- * Put your name at the top of this paper and on each of the 3 sections that are to be collected.
- * All 3 questions are to be attempted.
- * All 3 questions are of equal value.
- * All questions are to be answered on separate pages and will be collected in separate bundles at the end of this exam.
- * Use PEN to show all necessary working in every question.
- Full marks may not be awarded for careless or badly arranged work.
- * Diagrams are not to scale unless otherwise stated.

Question 1

- DDS is a triangle DD is produced to O
 - A. PRS is a triangle. RP is produced to Q such that QR = RS. QS is joined.

Which of the following best describes this figure?

- B. PQS is a triangle. Point R is marked on PQ such that <RPS = <RQS. RS is joined.
- C. PRS is a triangle. PR is produced to Q such that <RQS = <RSQ. QS is joined.</p>
- D. PQS is a triangle. R is marked as the midpoint of PQ and RS is joined.

b. Graph the function 2y - 6 = 0

1

Consider the function y = h(x). Answer the following question by referring to the incomplete table below.

		у:	= h(x))	À	
х	(-4	-2	ϵ^1	3	4	9
у	5	V -3	-6	7	m	0:
L		• • • • • • • • • • • • • • • • • • • •		·	. 2	

Find the value of m if y = h(x) is an

i. odd function.

2

ii. even function.

- 1
- d. ABC is a triangle in which angle $C = 15^{\circ}$, angle $A = 45^{\circ}$ and BC = 10 cm. Find side AC in simplest surd form.
- If $f(x) = \frac{x^2 + 3}{2}$ and $g(x) = \sqrt{2x 3}$ find g(a) and hence find f(g(a)).
- f. i. Show that $\frac{3x+5}{x+2} = 3 \frac{1}{x+2}$
 - ii. Find the domain and range of $f(x) = \frac{3x+5}{x+2}$
 - Hence sketch the graph of $f(x) = \frac{3x+5}{x+2}$

g. Find the area of the shaded region below

Question 2 (Start a new page)

a.

In the diagram above, triangle ABC is isosceles where angle ABC = angle ACB = α The points D and E lie on BC and AC respectively, so that AD = AE , as shown. Let angle BAD = β

i. State why
$$\angle ADC \neq \alpha + \beta$$
.

ii. Find
$$\angle$$
 DAC in terms of α and β .

iii. Hence or otherwise find
$$\angle$$
 EDC in terms of β .

h. i. Prove that
$$\frac{\cos \theta}{1 + \sin \theta} + \operatorname{Tan} \theta = \operatorname{Sec} \theta$$

ii. Hence solve
$$\frac{\cos \theta}{1 + \sin \theta} + \tan \theta = 2$$
 for $-180^{\circ} \le \theta \le 0^{\circ}$.

c. The diagram below shows two triangles with sides as marked.

- i. Show that triangles ACE and DBC are similar.
- ii. Find the length of AE.

3

3

d. In the following diagram PQRS is a square with sides x cm and PR is produced to T such that $RT = \frac{1}{2}PR$.

- i. Show that PQTS is a kite.(hint: use congruence)
- ii. Prove $RT = \frac{x\sqrt{2}}{2}$.

Question 3 (Start a new page)

- a. For what values of x would it be possible to sketch the curve $y = \sqrt{(3-x)(x+4)}$
- b. The probability that Helen will pass a Maths test is 0.7, an English test is 0.6, and a Science test is 0.8. When she sits for the three tests, find the probability that Helen passes exactly one test of the three tests.

- In a raffle, 30 tickets are sold and there are two prizes. What is the probability that someone buying 5 tickets wins at least one prise?
- d. A chessboard has 32 black squares and 32 white squares. Fredrico chooses three different squares at random.
 - i. What is the probability that Fredrico chooses three white squares?
 - ii. What is the probability that the three squares Fredrico chooses are the same colour?
 - iii. What is the probability that the three squares that Fredrico chooses are not the same colour?
- e. Prove that the area of the trapezium below is given by $A = \frac{1}{2} \times h \times (a + b)$. 2 (hint: join a diagonal)

A metal gutter open at the top and ends, is bent up from material 30cm wide to form a rectangular cross section with equal heights.

- i. If the base of the gutter is x cm wide, find the height, h, of the gutter in terms of x.
- ii. Show that the area of the gutter cross section is given by $A = 15x \frac{x^2}{2}$
- iii. Find the maximum value of A of the gutter.

2

$$(Solution)$$
 $(Solution)$
 $(So$

$$\frac{(050)}{1+\sin\theta} + \frac{1}{\cos\theta} = \frac{1}{\sec\theta}$$

$$\frac{(050)}{1+\sin\theta} + \frac{1}{\cos\theta}$$

$$\frac{(050)}{(050)} + \frac{1}{\sin\theta}$$

$$\frac{(05$$

$$\frac{BC}{EC} = \frac{BC}{AC}$$

$$\frac{4}{12} = \frac{5}{15}$$

$$\frac{1}{3} = \frac{1}{3}$$

included L = \$

ii)
$$\frac{AE}{2} = \frac{15}{5}$$

$$AE = 6$$

(5) PT common

: PS = PQ and ST = QT (matching sides of congruent D's)

i)
$$PR^2 = PS^2 + SR^2$$

 $PR^2 = x^2 + \infty^2$
 $PR^2 = 2x^2$

$$RT = \frac{1}{2} PR$$

$$FORT = \frac{1}{2} \times \sqrt{2} \times = \frac{\sqrt{2} \times 2}{2}$$

a)
$$(3-x)(x+4) \ge 0$$

(0.7×0.4×0.2)+(0.3×0.6×0.2) $+(0.3\times0.4\times0.8) = 0.188 = \frac{47}{250}$

$$+(0.3\times0.4\times0.8) = 0.188 = \frac{250}{250}$$

c)
$$P(\text{at least 1}) = 1 - P(\text{none})$$

= $1 - \frac{25}{30} \times \frac{24}{29}$

$$= \frac{1}{29}$$
(a) i) $\frac{32}{64} \times \frac{31}{63} \times \frac{30}{62} = \frac{5}{42}$

ii)
$$P(3\text{white}) = \frac{5}{42}$$
 (from i)
or $P(3\text{ black}) = \frac{5}{42}$ (same as i)

$$11/P(3 \text{ not same}) = 1 - t(3 \text{ same})$$

= $1 - \frac{5}{21} = \frac{16}{21}$

e)
$$A = \frac{1}{2} \times b \times A$$

$$A = \frac{1}{2} \times b \times$$

ii)
$$A = 0 \times h$$

= 0 (15 - $\frac{32}{2}$)
= 150c - $\frac{32}{2}$
iii) $A = 15 \times -\frac{32}{2}$
vertex = $x = -\frac{1}{2}a$

x = 15 = 15

(t) i) h+x+h=30

$$A = 15 \times 15 - \frac{15^{2}}{2}$$

$$A = 112.5 \text{ cm}^{2}$$

$$A = 15x15 - \frac{15^{3}}{2}$$

$$A = 112.5 \text{ cm}^{2}$$

(marking scheme)

a) (D)

b) see diagram (mark)

c) i) (Imark) -5 ii) (Imark) 5

d) (2marbs) $x = 5\sqrt{6}$ (1marb) $\frac{x}{\sin 60} = \frac{10}{\sin 45}$ or $\frac{10}{\sqrt{2}}$ on one side,

e) (2 marks) $g(a) = \sqrt{2a-3}$ and f(g(a)) = a(1 mark) either of the above,

f)i) ([mark) showing one side with = other

ii) (2 marks) D: x+-2 R: y + 3 (Imark) either one of the above

(Imark) See Sketch with labelling (Imark) a hyperbolic sketch with an assymptote at x=-2

9) (3 marks) 18 units² (2marks) (8,1) and (2,1)

(|mark) |x-5|=3or (8,1) or (2,1)or x=8 or x=2

(1) ext $L \Delta = sum int$ (1) opp L's

ii) (Imark) 180-2x-B

(Imark) (2 marks) \(\frac{\beta}{2}\)

(Imark) \(\Lambda\) ADE = \(\chi + \frac{\beta}{2}\)

or something on the right track

b) i) (2 marks) proof (1 mark) (mistake

(Imark) $\theta = -60$ (Imark) $\theta = 60$ or $6.0 = \frac{1}{2}$

(Imark) (C is common

ii) (mark) = 6

d) i) (3 marks) see proof (2 marks) proving SAS

(Imark) 2 speps of congruence proof correct.

(1) (Imark) see proof. (23a) (2marks) -4 < > < < 3 (Imark) X < 4, X > 3

or x<-4 or x>3or -4< x<3b) $(2marks) \frac{47}{250}$ or 0.188

(|mark) 0-7x0.4x0.2 ot 0-3x0.6x0.2 ot 0-3x0.4x0.8

(Imark) (2marks) = $\frac{5}{42}$ (Imark) $\frac{32}{64} \times \frac{31}{64} \times \frac{30}{64}$

(mark) 2 of 2x partianswer (MUST BE SHOWN)

(mark) 16 part(ii) answer

(MUST BE SHOWN)

EXT 1 Marking scheme (cont) gr 11 2 yry 07

03d Till

Q3 e) (2 marbs) see proof.

(Imark) showing $A = \frac{1}{2}bh$ of $A = \frac{1}{2}ah$

f)i) h = 15-3 (Imark)

ii) (Imark) showing A

iii) (2 marks) 112.5 cm 2

(Imark) x = 15