BRIGIDINE COLLEGE RANDWICK

MATHEMATICS EXTENSION 2

YEAR 12

HALF-YEARLY 2002

(TIME - 2 HOUR)

DIRECTIONS TO CANDIDATES

- * Put your name at the top of this paper and on each of the 5 sections to be collected.
- * All 5 questions may be attempted.
- * All 5 questions are to be answered on separate pages and will be collected in separate bundles at the end of this exam.
- * All questions are of equal value.
- * All necessary working should be shown in every question.
- * Full marks may not be awarded for careless or badly arranged work.

QUESTION 1 (start a new page)

a. Let
$$f(x) = \frac{(x - 2)(x + 1)}{5 - x}$$
 for $x \neq 5$.

i. Show that
$$f(x) = -x - 4 + \frac{18}{5 - x}$$
.

- ii. Explain the behaviour of the graph as $x \to \pm \infty$.
- iii. Show that the graph of y = f(x) has two stationary points.

 (There is no need to find the y coordinates of these stationary values.) 2 m
- iv. Sketch the graph of y = f(x).

 Label all asymptotes and show the x intercepts.

 2 m

b. The function
$$f(x)$$
 is given by
$$f(x) = \frac{4(2x - 7)}{(x - 3)(x + 1)}$$

- i. By expressing f(x) into partial fractions, show that there are turning points at x = 2 and x = 5.
- ii. Sketch the graph of f(x) showing clearly: 3 m
- the co-ordinates of any points of intersection with the x-axis and y-axis,
 - the co-ordinates of any turning points,
 - the equations of any asymptotes.

 (there is no need to investigate points of inflection)
 - Determine the area of the region bounded by this curve f(x), the x-axis and the lines x = 4 and x = 6, expressing your answer as a single logarithm.

QUESTION 2 (start a new page)

a. Evaluate
$$\int_{0}^{\pi/4} \frac{e^{\tan x}}{\cos^{2} x} dx$$
 2 m

b. Evaluate
$$\int_{0}^{2} x e^{x} dx$$
 2 m

c. By considering the substitution
$$u = \sqrt{x}$$
, $3m$

Evaluate
$$\int_{4}^{12} \frac{1}{(4 + x)\sqrt{x}} dx.$$

d. Evaluate
$$\int_{-1}^{10} \frac{2x + 1}{x^2 + 2x + 2} dx$$
 3 m

e. i. Show that if
$$I_n = \int \tan^n \phi \ d \phi$$
 then
$$I_n = \frac{1}{n-1} \tan^{n-1} \phi - I_{n-2}$$

ii. Hence, use this to evaluate
$$\int_{0}^{\pi/4} \tan^{4} \phi \ d \phi$$
 2 m

QUESTION 3 (start a new page)

a. Find
$$(1 - i)^3 (2 + 2i)^4$$
 in the form $x + yi$.

3 m

b. Show that the expression
$$\frac{1+2i}{3-4i}+\frac{2-i}{5i}$$
 is purely Real.

2 m

c. Find the cube roots of 8 cis
$$(\pi/2)$$
.

3 m

d. If
$$\left| \frac{z+2}{z+8} \right| = \frac{1}{2}$$
, show that $|z| = 4$.

3 m

4 m

- i. The perpendicular bisector of AB, given that A and B are the points A(-1,2) and B (3,1).
- ii. The Region outside the circle of centre (0,0) and radius 3 units.

iii. The circle
$$(x + 1)^2 + (y + 2)^2 = 4$$
.

QUESTION 4 (start a new page)

a. i. Sketch the curve given by |z-2|+|z+2|=6.

4 m

ii. Express this curve in cartesian form.

5 m

c. The ellipse to the right has major axis 2a, minor axis 2b, eccentricity e and foci at S and S'.

By considering the definition that

$$SP = e PM$$

Show that

- i. The equation of the directrix is $x = \frac{a}{c}$
- ii. The Focus at S has coordinates (ae,0).

iii. $b^2 = a^2 (1 - e^2)$

6 m

- d. i. Show that the Point P $(t, \frac{1}{t})$ lies on the rectangular hyperbola xy = 1.
 - ii. Show that the tangent at P has equation $y = -x/t^2 + 2/t$.
 - iii. Show that the perpendicular from the origin to this tangent has equation $y = t^2 x$.
 - iv. Show that the foot of this perpendicular on the tangent has co-ordinates

$$(\frac{2t}{1+t^4}, \frac{2t^3}{1+t^4}).$$

QUESTION 5 (start a new page)

a. i. Show that the normal to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at the point P (5 cos ϕ , 3 sin ϕ) has equation 5x sin ϕ - 3y cos ϕ = 16 sin ϕ cos ϕ .

3 m

- ii. This normal cuts the major and minor axis of the ellipse at G and H respectively.

 Show that as P moves on the ellipse the midpoint GH describes another ellipse with the same eccentricity as the first.
- iii. On the same axes, sketch the two ellipses showing clearly the co-ordinates of the intercepts.

b. i. Sketch the curves $y = \sin^2 x$ and $y = \cos 2x - 1$.

2 m

ii. Determine the area enclosed by these two curves and the lines $x = \pi/3$ and $x = \pi/2$.

- end of exam -

Ext 1 HY Qaj As A dwilling x +5 | x2 -2 -2 ij (5-2)(-2-4)+18 iiy xmolym ~ ->- ob / y -> - x - T + 18(5-2) $(5-\pi)^2 = 18$ 127 = -36 (5-x) 10/

 $\frac{5}{5} = \frac{4(2x-7)}{(x-3)(x+1)}$ a (2+1) + b(2-3) 4(2>-7) = => b= 9 $f(x) = \frac{1}{(x-3)} + \frac{9}{(x+1)}$ $\xi'(x) = \frac{1}{(x-3)} - \frac{4}{(x+1)^2}$ $=\frac{(x+1)^{2}-9(x-3)^{2}}{(x-3)^{2}(x+1)^{2}}$ = -8 x 2 + 56 x - 80 / 69 = -8[2+72+10)/00 = -8 (2-27(2-5)/00 min (2,4) 3 $A = \int_{a}^{b} \left[\frac{1}{2^{n-3}} + \frac{1}{2^{n-3}} \right] ds$ = - h (x-3) +9h (x+1) 4 3 $= [-2n^{3} + 9n^{7}]$ $= [-2n^{3} + 9n^{7}]$

Ext 2 t/ 2002 54 tm - Lo 0 cos22 = { e tar secrodo = tax 14 = e -e = e - 1 5/ (2 » e h $h = x \qquad \frac{dU}{dr} = e^{x}$ $d = x \qquad V = e^{x}$ = x e x - \ e x - \ \ -= xex - [ex] |? = (2e²-e²)+(e°) = 2e^- e^ + \ = e^+ \ = tm = 2 = tm 53 - tri = $=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$

 \[
 \frac{1}{2\pi + 1} \\
 \fr 2x+1 = \(2x+2 - \frac{1}{x^2 + 2x + 2} - \frac{1}{x^2 + 12x + 2} \) $= \ln (x^2 + 2x + 2) - \int \frac{1}{1 + (x + 1)!}$ = tam (x+1) = lu 122 - tu " 11 - lu 1 = ln 122 - trn 11 + # ey In = Stom p dq y = (tm + d d + =) tm (sac = -1) d\$ = \ tm^2 soc 4 d\$ - | tm 4 d& $I_{n} = \frac{1}{n-1} + \frac{1}{n} - \frac{T}{n-2}$ ii) \$\frac{1}{5} + \frac{4}{5} \phi \frac{20}{5} = \frac{1}{3} \ta \frac{7}{4} - \int \ta \frac{1}{6} \ta \frac = 13 - [tm = -] tm plo] = 3 - 1 + 5 - 10 = 13 - 1 + 6 | 1 +

 $Z_2 = \frac{\pi}{6} + \frac{4\pi}{6} = \left(\frac{5\pi}{6}\right)$

そ3 = モー・サーン(エ)

$$\frac{1}{2+2} \left| \frac{1}{2+5} \right| = \frac{1}{2}$$

$$2 \left| \frac{1}{2+2} \right| = \left| \frac{1}{2+5} \right|$$

$$2 \left| \frac{1}{2+2} \right| = \left| \frac{1}{2+5} \right|$$

$$2 \left| \frac{1}{2+2} \right| = \left| \frac{1}{2+5} \right|$$

$$= \left| \frac{1}{2+2} \right| = \left| \frac{1}{2+5} \right|$$

$$= \left| \frac{1}{2+1} \right| = \left| \frac{1}{2+5} \right|$$

$$= \left| \frac$$

Q4

a ij

ii
$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

book work

$$\frac{dy}{dx} = t$$

$$\frac{dy}{dx} = -t^{-1}$$

$$\frac{dy}{dx} = -\frac{1}{t^{2}} = -\frac{1}{t^{2}}$$

$$y = -\frac{1}{t^{2}} + \frac{2t}{t}$$

 $\frac{diff}{dt} = \frac{1}{4} \cdot \frac{1}{(1-t)^2}$ $\frac{d}{dt} = \frac{1}{4} \cdot \frac{1}{(1-t)^2}$ $\frac{d}{d$

44 tx/4 2002 PS 4 25 + 32 = 1 (Book work) -. 5x 5, np - 3y 6, 4=16 5. - ¢ c = \$ ii, G: y=0 - (15 6,0) (0, -16 s.~ 4) milport M M = (& 6, 6, -8 sint) M on despor $\frac{x^2}{\left(\frac{\xi}{5}\right)^2} + \frac{y^2}{\left(\frac{\xi}{3}\right)^2} = 0$ $\frac{\lambda^2}{2\zeta} + \frac{\zeta^2}{q} = \zeta$ e2= (5-9)/25 = 1port mellips. e2 = [(%)2-(%)2/(5)

