BRIGIDINE COLLEGE RANDWICK

Year	12	Math	ema	tics
------	----	------	-----	------

Student

14 June 2006 Time 45 minutes

Teacher

Show all necessary working.

Neatness may be taken into consideration in the awarding of marks.

1. Determine the following

a.
$$\int \frac{1}{e^{2x}} dx$$

(1)

b.
$$\int \frac{3}{x+1} dx$$

(1)

c.
$$\int \sin 2x \, dx$$

(2)

2. Evaluate
$$\int_0^{\frac{\pi}{4}} 2 \operatorname{Sec}^2 x \, dx$$

(2)

3. Find
$$\frac{d}{dx} \ln \sqrt{x}$$

(2)

4. State the domain of the function
$$y = \ln (5-2x)$$
.

(2)

The perimeter of a sector is 40 cm. If the angle at the centre is 3 radians, find the radius of the circle.

ST x 180 = 1500

- 6. Prove that the area under the curve $y = e^x$ from x = 0 to $x = \ln 3$ is equal to the area under the curve $y = \frac{4}{x}$ from x = 1 to $x = e^{0.5}$ (Clearly show your working) (4)
- 7. Find $\frac{d}{dx} \ln (x^4 + 1)$, hence or otherwise evaluate $\int_0^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx$ (correct to 3 sig figs).
- 8. a. Sketch the graph of $y = 3\cos 2x$ over the domain $0 \le x \le 2\pi$ indicating important features of the curve. (3)

9. a. If
$$f(x) = e^{-\frac{1}{2}x^2}$$
 find $f'(x)$ and show that $f''(x) = (x^2 - 1)e^{-\frac{1}{2}x^2}$ (2)

- b. Show that there is only one stationary point at (0,1) and determine its nature. (2)
- c. Determine the coordinates of the point(s) of inflection to the curve. (2)
- d. Show that y = f(x) is an even function. (1)
- e. Use the above information to sketch the curve, showing clearly what happens as $x \to \pm \infty$ (2)

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

BRIGIDINE COLLEGE RANDWICK

YEAR 12 MATHEMATICS ASSESSMENT TASK – 14 June, 2006

MARKING SCHEME

QUESTION 1: Omission of "C" not penalised

- (a) Correct answer $-\frac{1}{2}e^{-2x} + C$: 1 mark
- (b) $3\ln(x+1) + C \text{ or } 3\log(x+1) + C$: 1 mark
- (c) $-\frac{1}{2}\cos 2x + C$: 2 marks $\frac{1}{2}\cos 2x + C$: 1 mark $-\cos 2x + C$: 1 mark $-\cos 2x + C$: 1 mark $\cos 2x + C$: 0 mark

QUESTION 2

Correct definite integral, $[2 \tan x]_0^{\frac{\pi}{4}}$: 1 mark 2 or correct evaluation of definite integral: 1 mark

QUESTION 3

$$\ln \sqrt{x} = \ln \left(x^{\frac{1}{2}}\right) \operatorname{or} \frac{1}{2} \ln x ; \qquad 1 \text{ man}$$

Correct answer $\frac{1}{2x}$ or appropriate answer from incorrect working:

Note: Mathematically incorrect statements were penalised.

QUESTION 4

$$5 - 2x > 0$$

Correct answer, $x < \frac{5}{2}$, or appropriate answer following incorrect working:

QUESTION 5

Perimeter =
$$2r + r\theta$$
 1 mark
= $5r$: 1 mark
 r = 8cm; $13\frac{1}{3}$ 1 mark

QUESTION 6

$$A_1 = \int_0^{\ln x} e^x dx$$

Correct integration

lmark

1 mark

Corre	ect evaluation	1 mark
A_2	$= \int_{1}^{e^{0.1}} \frac{4}{x} dx$	

1 mark

1 mark

OUESTION 7

Correct integration

Correct evaluation

Correct differentiation of $ln(x^4 + 1)$	1 mark
Control difficion di man 11	1 IIIaik

Correct integration of
$$\int_0^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx = 1 \text{ mark}$$

Evaluation of definite integral 1

QUESTION 8

(a) Graph of $y = 3\cos 2x$

Correct shape – cosine curve; includes correct x-intercepts, appropriate scales on axes.

		l mark
	Correct amplitude	l mark
	Correct period	l mark
)	Correct statement of area	1 mark

Correct period I mark

Correct statement of area I mark

Correct integration I mark

Correct exact values I mark

Correct simplification I mark

QUESTION 9

- (a) Correct f'(x) I mark

 Correct f''(x) 1 mark
- b) Stationary point at (0, 1) 1 mark Note: it is not sufficient to substitute x = 0 into f'(x). This only demonstrates that a stationary point exists for x = 0, not that there is only one stationary point. To show only one stationary point exists it is necessary to solve the equation

$$-xe^{-\frac{\pi}{2}x} = 0$$

Nature of stationary point

1 mark

Year 12 Mathematics Assessment Task – Marking Scheme 14 June 2006 (page 1) (c) Coordinate(s) of point(s) of inflection

1 mark

Showing concavity changes 1 mark

(d) Showing f'(-x) = f(x) 1 mark

(e) Sketching the curve

Information to be included on graph:

• Maximum stationary point at (0, 1) – (b)

• Points of inflection at $(-1, e^{-\frac{1}{2}})$ and $(1, e^{-\frac{1}{2}}) = (c)$.

• The graph is symmetrical about the v-axis - (d)

The x-axis is an asymptote (above)

Any two of the of the above

l mark

All four of the above

2 marks

Year 12 Mathematics Assessment Task - Marking Scheme 14 June 2006 (page 2)

BRIGIDINE COLLEGE RANDWICK

YEAR 12 MATHEMATICS ASSESSMENT TASK - 14 June, 2006

SOLUTIONS AND ANSWERS

QUESTION 1

$$\int \frac{1}{e^{2x}} dx = \int e^{-2x} dx$$
$$= -\frac{1}{2} e^{-2x} + C$$

(b)
$$\int \frac{3}{x+1} dx = 3\ln(x+1) + C$$

(c)
$$\int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C$$

QUESTION 2

$$\int_{0}^{\frac{\pi}{4}} 2 \sec^{2} x \, dx = \left[2 \tan x \right]_{0}^{\frac{\pi}{4}}$$

$$= 2 \left[\tan \frac{\pi}{4} - \tan 0 \right]$$

$$= 2$$

QUESTION 3

$$\frac{d}{dx}(\ln\sqrt{x}) = \frac{d}{dx}\ln\left(\frac{1}{x^2}\right)$$
$$= \frac{d}{dx}\left(\frac{1}{2}\ln x\right)$$
$$= \frac{1}{2x}$$

QUESTION 4: State the domain of y = ln(5 - 2x)

The function $y = \ln(5 - 2x)$ is only defined for

$$5 - 2x > 0$$

$$-2x > -5$$

$$x < \frac{5}{2} \text{ or } x < 2\frac{1}{2} \text{ etc}$$

QUESTION 5

Perimeter =
$$2r + r\theta$$
 Radius = $r\theta$
= $2r + rx + rx + r\theta$
= $2r + rx + rx + r\theta$
Thus $5r = 40$ cm
 $r = 8$ cm
Radius = $r\theta$

OUESTION 6: Prove that the area under the curve $y = e^x$ from x = 0 to $x = \ln 3$ is equal to the area under

QUESTION 7: Find $\frac{d}{dx}\ln(x^4+1)$, hence evaluate

$$\int_{0}^{\sqrt{2}} \frac{2x^{3}}{x^{4}+1} dx$$
 (correct to 3 sig figs.

$$\frac{d}{dx}\ln(x^4+1) = \frac{4x^3}{x^4+1}$$

Now
$$\frac{2x^{3}}{x^{4} + 1} = \frac{1}{2} \times \frac{4x^{3}}{x^{4} + 1}$$

$$\therefore \int_{0}^{\sqrt{2}} \frac{2x^{3}}{x^{4} + 1} dx = \frac{1}{2} \int_{0}^{\sqrt{2}} \frac{4x^{3}}{x^{4} + 1} dx$$

$$= \frac{1}{2} \left[\ln(x^{4} + 1) \right]_{0}^{\sqrt{2}}$$

$$= \frac{1}{2} \left[\ln(\sqrt{2}^{4} + 1) - \ln(0^{4} + 1) \right]$$

$$= \frac{1}{2} \left[\ln 5 - \ln 1 \right]$$

$$= \frac{1}{2} \ln 5$$

$$= 0.805(3 \text{ sig. figs})$$

Year 12 Mathematics Assessment Task - Solutions 14 June 2006 (page 1)

QUESTION 8

(a) Sketch the curve $y = 3\cos 2x$ over the domain $0 \le x \le 2\pi$ indicating the important features of the

Find the area bounded by the curve and the axes from x = 0 to $x = \frac{\pi}{2}$ (leave your answer in fully simplified exact form).

Area =
$$\int_{0}^{\frac{\pi}{4}} 3\cos 2x dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 3\cos 2x dx$$

= $\frac{3}{2} \left[\sin 2x \int_{0}^{\frac{\pi}{4}} + \frac{3}{2} \left[\sin 2x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \right]$
= $\frac{3}{2} \left[\sin \frac{\pi}{2} - \sin 0 + \left| \sin \frac{2\pi}{3} - \sin \frac{\pi}{2} \right| \right]$
= $\frac{3}{2} \left[1 - 0 + \left| \frac{\sqrt{3}}{2} - 1 \right| \right]$
= $\frac{3}{2} \left[1 - \left(\frac{\sqrt{3}}{2} - 1 \right) \right]$
= $\frac{3}{2} \left[2 - \frac{\sqrt{3}}{2} \right]$
= $\frac{3}{2} \left[4 - \sqrt{3} \right]$ unit²

QUESTION 9

(a) If $f(x) = e^{-\frac{1}{2}x^3}$, find f'(x) and show that $f''(x) = (x^2 - 1)e^{-\frac{1}{2}x^2}$

$$f(x) = e^{-\frac{1}{2}x^{2}}$$

$$f'(x) = -xe^{-\frac{1}{2}x^{2}}$$

$$f''(x) = (-x)\frac{de^{-\frac{1}{2}x^{2}}}{dx} + e^{-\frac{1}{2}x^{2}}\frac{d(-x)}{dx}$$

$$= (-x)(-xe^{-\frac{1}{2}x^{2}}) - e^{-\frac{1}{2}x^{2}}$$

$$= x^{2}e^{-\frac{1}{2}x^{2}} - e^{-\frac{1}{2}x^{2}}$$

$$= e^{-\frac{1}{2}x^2}(x^2-1)$$

(b) Show that there is only one stationary point at (0, 1) and determine its nature

For a stationary point f'(x) = 0.

i.e.
$$-xe^{-\frac{1}{2}x^2} = 0$$

As $e^{-\frac{1}{2}x^2} > 0$ for a

As
$$e^2 > 0$$
 for all :

then
$$x = 0$$

Now
$$f(0) = e^0$$

$$w f(0) = e$$

$$= 1$$

Thus there is only one stationary point with coordinates (0, 1).

For x = 0 (i.e. slightly before 0)

$$f'(x) = -(0^{-})e^{-\frac{1}{2}(0^{-})^{2}}$$

$$\to (-)(-)(+) \to (+)$$

i.e. immediately before (0, 1) f'(x) is positive.

For $x = 0^+$ (i.e. slightly after 0)

$$f'(x) = -(0^+)e^{-\frac{1}{2}(0^+)^2} \cdot \\ \rightarrow (-)(+)(+) \rightarrow (-)$$

i.e. immediately after (0, 1) f'(x) is negative. : (0, 1) is a maximum turning point.

Determine the coordinates of the point(s) of inflection to the curve.

For a point of inflection f''(x) = 0 and the concavity changes.

$$\int_{-\frac{\pi}{2}x^{-1}}^{\frac{\pi}{2}x^{-1}}(x^{2}-1) = 0$$

$$(x^2 - 1) = 0$$

$$x = +1$$

$$x = 1$$
 $f''(1^{-}) = e^{-\frac{1}{2}(1^{-})^2} ((1^{-})^2 - 1) < 0$
 $\rightarrow (+)(-)$ (1' is a fraction)

$$f''(1^+) = e^{-\frac{1}{2}(1^+)^2}((1^+)^2 - 1) < 0$$

Thus, as the concavity changes, there is a point of inflection at x = 1.

$$x = -1 f''(-1^-) = e^{-\frac{1}{2}(t^-)^2} ((-1^-)^2 - 1) > 0$$

$$f''(-1^+) = e^{-\frac{1}{2}(t^+)^2} ((-1^+)^2 - 1) < 0$$

Thus, as the concavity changes, there is a point of inflection at x = -1.

The points of inflection are $(-1, e^{-\frac{1}{2}})$ and $(1, e^{-\frac{1}{2}})$

(d) Show that y = f(x) is an even function.

For an even function f(-a) = f(a)

$$f(-a) = e^{-\frac{1}{2}a}$$
$$= e^{-\frac{1}{2}a}$$

$$f(a) = e^{-\frac{1}{2}a}$$

$$= e^{-\frac{1}{2}a^{2}}$$

$$= f(-a)$$

(e) Use the above information to sketch the curve, showing clearly what happens as $x \to \pm \infty$

As $x \to -\infty$, $e^{-\frac{1}{2}x^2} \to 0$, and as $x \to \infty$, $e^{-\frac{1}{2}x^2} \to 0$. Thus the x-axis is an asymptote to the curve.

Information to be included on graph:

- Maximum stationary point at (0, 1) (b)
- Points of inflection at $(-1, e^{-\frac{1}{2}})$ and $(1, e^{-\frac{1}{2}})$ (c)
- The graph is symmetrical about the y-axis (d)
- The x-axis is an asymptote (above)

