

BRIGIDINE COLLEGE RANDWICK

Extension 2 Mathematics

Assessment Task 1, 2009

(Time: 45 mins)

Directions to candidates:

- Write your name at the top of this question paper and each page to be handed in.
- All questions are to be attempted.
- All necessary working should be shown for every question.
- Full marks may not be awarded for careless or badly arranged work.

1.	Simp	lify i^{2009}	1
2.	Let $z = a + ib$, where a and b are real. Find:		
	(<i>i</i>)	$\operatorname{Im}(4i-z)$.	2
	(ii)	$\overline{(3iz)}$ in the form $x + iy$ where x and y are real	. 2
	(ii)	$\tan \theta$ where $\theta = \arg(z^2)$	2
3.	Expr	Express in modulus-argument form:	
	<i>(i)</i>	-1+i	2
	(ii)	$(-1+i)^n$	2
4.	(a)	On the same diagram, draw a neat sketch of the locus specified by each of the following	
		(i) $ z - (3 + 2i) = 2$	2
		(ii) $ z+3 = z-5 $	2
	(b)	Use your diagram from (a) to determine the values of k for which the simultaneous shown below have exactly one solution for z .	1

|z - (3 + 2i)| = 2

|z-2i|=k

5. (a) Express as a complex equation the following locus:

"The perpendicular bisector of AB given A is (-2, -1) and B is (1, 3)."

2

(b) (i) If z = x + iy, simplify $|z^2 - (\overline{z})^2|$

2

(ii) Sketch the region $|z^2 - (\overline{z})^2| \ge 16$

2

6. (a) Evaluate $\int_{1}^{3} \frac{4}{(2+x)^2} dx$

2

(b) Find $\int \sec^2 x \tan x \, dx$

2

3

(c) Evaluate $\int_{1}^{2} \frac{11-2x}{(2x-1)(3-x)} dx$

2

7. (a) Find $\int \frac{2x}{x^2 + 6x + 1} dx$

2

(b) Find $\int xe^{x^2} dx$

(ii)

1

8. (i) Express $3 + x^2$ in the form $a^2 + x^2$.

1

Hence, using the Table of Standard Integrals provided, find $\int \frac{2}{3+x^2} dx$