BRIGIDINE COLLEGE RANDWICK

MATHEMATICS

YEAR 12

HALF-YEARLY 2003

(TIME - 2 HOUR)

DIRECTIONS TO CANDIDATES

- * Put your name at the top of this paper and on each of the 6 sections to be collected.
- * All 6 questions may be attempted.
- * All 6 questions are to be answered on separate pages and will be collected in separate bundles at the end of this exam.
- * All questions are of equal value.
- * All necessary working should be shown in every question.
- * Full marks may not be awarded for careless or badly arranged work.

Question 1 (start a new page)

a. Completely factorise
$$8 x^3 - 27$$
.

1 m

$$b. \qquad \frac{\sqrt{41.6 + 39.5}}{0.52 + 321}$$

2 m

(correct to 3 significant figures)

c. Find
$$\frac{d(x^3 - 2x + \sqrt{x})}{dx}$$

2 m

d. A diamond ring appreciates in value by 1.5% per year. If the present value of the ring is \$2350, what would be the value of the ring in 12 years time?

2 m

e. Find the primitive function of

$$\frac{1}{(1-4x)^4}$$

2 m

f. Find the locus of all the points P (x,y) whose distance from A (1,4) is twice its distance from B (-3,5).

3 m

g. Write down the equation of the tangent to

3 m

the curve $y = \sqrt{x} + 1$ when x = 4.

Question 2 (start a new page)

a. Show that
$$\frac{2\sqrt{3}}{\sqrt{3} + \sqrt{2}}$$
 may be expressed in the form 2 m

 $a + b \sqrt{6}$ and state the values of a and b.

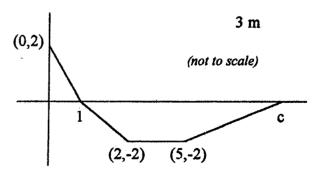
b. Solve the inequalities given by

i.
$$\left|\frac{3x-2}{2}\right| < 4$$

ii.
$$2x^2 + x \ge 6$$
 3 m

c. If α and β are the roots to the equation $2x^2 + 3x - 4 = 0$,

find the value of:

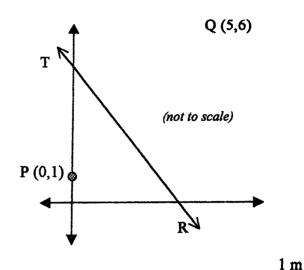

i.
$$\alpha + \beta$$

ii.
$$\alpha^2 \beta^2$$

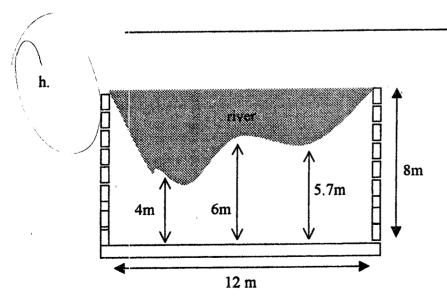
iii.
$$\alpha^2 + \beta^2$$

d. This figure to the right is made up of a relation r (x) which traces out a triangle and a trapezium.

The triangle has vertices (0,0), (1,0) and (0,2). The trapezium has vertices (1,0), (2,-2), (5,-2) and (c,0).


It is given that $\int_{0}^{c} r(x) dx = -8.5$, determine the value of c.

Question 3 (start a new page)


In the diagram to the right, P and Q have coordinates (0,1) and (5,6) respectively.

The line through T and R has equation 3x + 2y - 12 = 0.

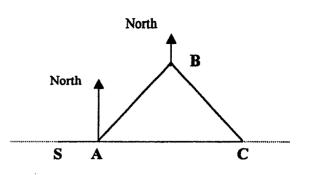
Copy the diagram onto your answer page.

- a. Find the length of PR.
- b. Show that the gradient of PQ is 1.
- c. Show that the equation of the line through P and Q is x y + 1 = 0 2 m
- d. Find the coordinates of the point at which the lines x y + 1 = 0 2 m and 3x + 2y 12 = 0 intersect.
- e. Find the perpendicular distance of the point P from the line 3x + 2y 12 = 0. 2 m
- f. Find the angle which the line PQ makes with the positive direction of the x axis. 2 m
- g. On your diagram shade the region satisfying the inequalities $3x + 2y 12 \ge 0$ and $x y + 1 \ge 0$.

3 m

1 m

A market garden is bounded on one side by a river and the other 3 sides by stones.

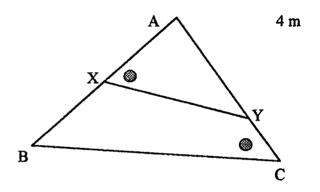

Its dimensions are shown in this diagram to the left.

By using Simpson's Rule with two applications, determine the area of this market garden.

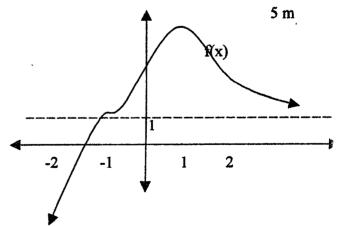
Question 4 (start a new page)

a. From the start S, Sharon rode 3 km due east to A. At A, she proceeded on a bearing of 055° for 10 km to B. At B, she changed course to a bearing of 130° and continued in this direction until she reached the finish at C.

(C is due east of the start S and A)


- i. Copy this diagram onto your answer sheet and display this information. 1 m
- ii. Show that $< ACB = 40^{\circ}$.
- iii. Use the sine rule to find the distance from **B** to **C** (nearest km).
- iv. It took Sharon 24 minutes to travel from the start to the finish. 2 m What was her average speed in km / hr?
- b. In this figure to the right, <AXY = < ACB.

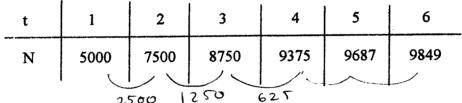
Redraw this figure onto your exam page.



ii. Hence, or otherwise, show that

 $AB \cdot AX = AC \cdot AY$

- c. The following questions refer to the graph of f(x) to the right:
 - i. For what values of x is f(x) increasing?
 - ii. For what values of x is f(x) concave up?

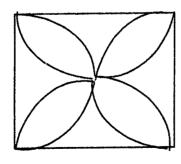

- iii. State what is happening to the curve when x = -1 and when x = 1.
- iv. Find $\lim_{x\to\infty} f(x)$.

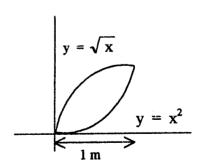
a. Consider the curve given by $f(x) = x(x - 3)^2$.

6 m


- i. Determine its x and y intercepts.
- ii. Show that there exists stationary values at x = 1 and x = 3 and determine their nature.
- iii. Show the existence of a point of inflection.
- iv. Draw a sketch of f(x) in domain $-1 \le x \le 4$.
- b. The table below lists the number of sales for a new product N over a period of time t (months).

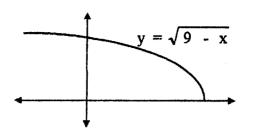
2 m


Comment on these sales in terms of $\frac{d N}{dt}$ and $\frac{d^2 N}{dt^2}$ justifying your answer in words.


c. To the right is a sketch the curve $y = -x^2 + 4$ in the domain $-2 \le x \le 2$.

Determine the volume formed when the area bounded by this curve and the x axis is rotated about the x - axis.

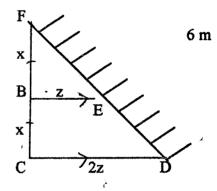
d. The design for a tile is shown below and the upper section of the tile on a coordinate plane. It consists of a flower with four petals. The curves making up the upper right section petals are parabolas with equations $y = x^2$ and $y = \sqrt{x}$.


4 m

- i. Determine the area bounded by the two curves $y = x^2$ and $y = \sqrt{x}$.
- ii. If the flowers are to be painted yellow, what percentage of the tile will be yellow?

Question 6 (start a new page)

ii.


a. The area trapped between the curve $y = \sqrt{9 - x}$ and the coordinate axes is rotated about the y-axis, determine the resultant volume.

- b. i. Sketch these curves $y = x^3$ and $y = x^2 + 4$ on the same number plane.
 - Verify that the curves $y = x^3$ and $y = x^2 + 4$ intersect at the point (2, 8).
 - iii. Find the area of the region bounded by the curves $y = x^3$ and $y = x^2 + 4$ in the first quadrant.
- c. A farmer wishing to keep her animals separate, sets up a field (right) so that fences will exist at FC, CD and BE.

The side FD is a brick wall.

B is in the middle of FC and CD is parallel and twice the length of BE.

4 m

5 m

If FB = x metres and BE = z metres, write down expressions in terms of x and z for:

- i. The area, A, of the field FCD.
- ii. The amount of fencing, L, that the farmer would need.
- iii. If the area of the field is 1200 m², show that the length of fencing required is given by

$$L = 2x + \frac{1800}{x} \text{ metres}$$

iv. Hence find the values of x and z so that the farmer uses the minimum amount of fencing.

EVENS
$$yr_{12} = \frac{1}{2} yr_{14} y_{14} y_{15} = \frac{1}{2003} y_{15$$

$$2x^{2} + 3x - 4 = 0$$
1) $x + \beta = \frac{3}{2}$
1i) $(x \beta)^{2} = (\frac{4}{2})^{2} = (-2)^{2} + 4t$

$$= (-\frac{3}{2})^{2} - 2x - 2$$

$$= 6\frac{1}{4}$$

$$A_{1} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{2} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{3} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{4} = \frac{1}{2} \times |x|^{2} = 1$$

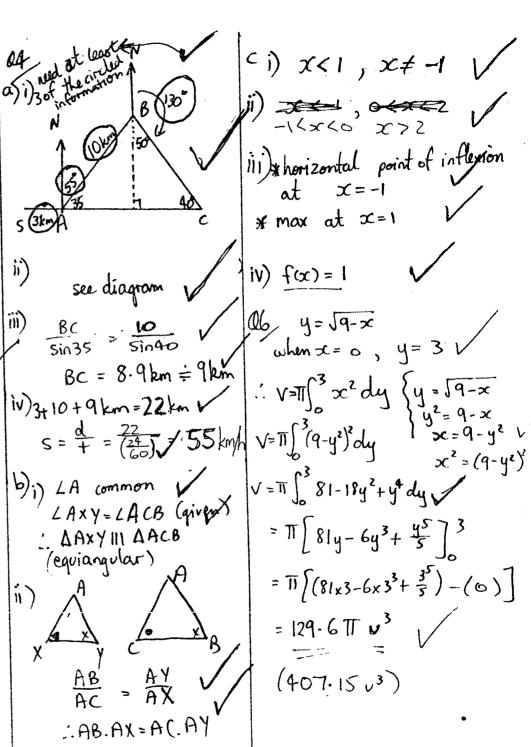
$$A_{5} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{7} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{8} = \frac{1}{2} \times |x|^{2} = 1$$

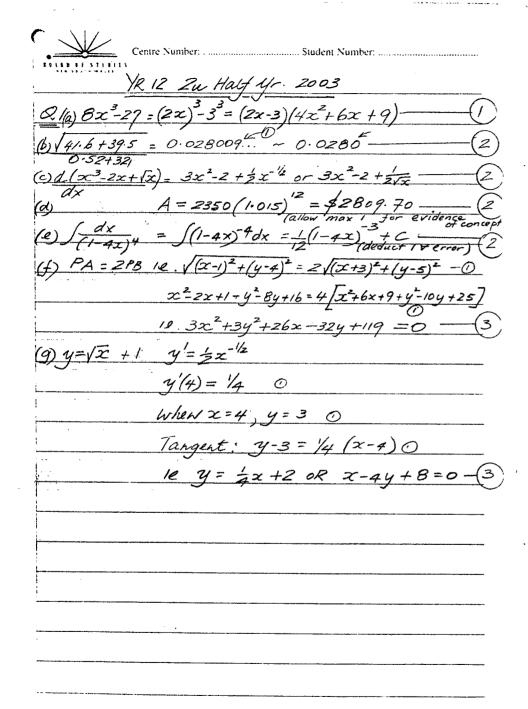
$$A_{1} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{2} = \frac{1}{2} \times |x|^{2} = 1$$


$$A_{2} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{3} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{4} = \frac{1}{2} \times |x|^{2} = 1$$


$$A_{5} = \frac{1}{2} \times |x|^{2} = 1$$

$$A_{7} = \frac{1}{2} \times |x|^{2$$

ii)
$$y = x^3$$
 $y = x^2 + 4$
sub (2,8) $y = x^3$ $y = x^2 + 4$
 $y = x^2 + 4$. True inherect at (2,8)
iii) $y = x^3$ $y = x^2 + 4$. $y = x^3$ $y = x^4$ $y = x^3$ $y = x^4$ $y = x^3$

ii)
$$y = x^3$$
 $y = x^2 + 4$
sub (2,8) $\begin{cases} 8 = 2^2 + 4 \end{cases}$ True intersect at $(2,8)$
iii) $A = \begin{cases} 2 & x^2 + 4 - x^3 & dx \\ 4 & x^2 + 4 - x^4 \end{cases}$ $= \begin{cases} \frac{x^3}{3} + 4x - \frac{x^4}{4} \\ 3 & x^2 + 4 - x^4 \end{cases}$ $= \begin{cases} \frac{8}{3} + 8 - \frac{16}{4} \\ 3 & x^2 + 4 - x^4 \end{cases}$ $= \begin{cases} \frac{8}{3} + 8 - \frac{16}{4} \\ 3 & x^2 + 4 - x^4 \end{cases}$

Centre Number: Student Number:
19419 1f STEPICS
(3a) $PR = \sqrt{(4-0)^2 + (0-1)^2} = \sqrt{17}$
b) m/PQ = $\frac{6-1}{5-0}$ = 1
$c\lambda y - 1 = 1(x - 0) 10 y = x + 1$ (2)
c) $y-1 = 1(x-0)$ 10 $y=x+1$ (2) OR $y-6 = 1(x-5)$ etc OR Sub Q(5,6) AND P(0,1) into $x-y+1=0$
d) $x-y+1=0-11$
3x+24-12=0-(2)
Sub. (1) y= x+1 into (2): 3x(1): 3x - 3y +3=0
$3x + 2(x+1) \cdot 13 = 0$
$3x + 2(x+1) - 12 = 0$ $10 \cdot x = 2$ $10 \cdot y = 3$
y=3 x=2
2) $d = 3(0) + 2(1) - 12 = 10$ or $10\sqrt{13}$ units $\sqrt{2}$
(4)
(1) m (+Q)= 1 10 +an 0=1, 0=450 (2)
(9)
70
4. yt 7 2 -3x+2y-12=0.
(h) Approx ana = 1(8+4×4+2×6+4×5·7+8)
OR 1 (8+4×4+6) + 1 (6+4×5.7+8)
Singe correcture of rule -max 2

Il local max at x=1 max at x=1. 10 local min at x=3 14 (iv) Correct from non-trivial i (-1,-16)

	Centre Number:	•••••	Student Num	ber:	
(b) For	15/- 6	6	***************************************		2
	V is increa		dN>	2	/
$d^2N =$	$\frac{d(dN)}{dt}$		at '		
			·		~~~
Nisin	creasing a	at a	decreas	ing ral	<u>a</u>
Increase 25	00 1250 625	3/2	6		
/.L	$\frac{d^2N}{dt^2}$	<0		/	
(c) V= 7	TSyZdx				
> 77	$\int_{-2}^{2} (4-x^2)^2$	dx or.	211 / (4-2	c^2) dx .	_/_
= 17	$\int_{-2}^{2} (16 - 8x^{2} + x^{2})$	c4) dx	- 0		
= 77	$\int 16x - \frac{8}{3}x^3 +$	$\frac{\chi^5}{5}$			<u>-/</u>
	[32-64 + 32 , 3 + 3				
= 34	+ 2/15 17 OR 3	4.137	u ³		·/ (3
	7.2 u3)				
(d)(i) Apelal	$=\int_{0}^{\infty}(\sqrt{x}-1)$	$(x^2) dx/$		/	
	$=\frac{(\frac{2}{3}x^{3/2}-$	$\frac{x^3}{3}$, , , , , , , , , , , , , , , , , , ,
(") % 2/] = <u>4</u>	x 1/3 x 110	00	
	tile yellow	: 33	1/3 %	/	,
