Student: JACINTA GOUTHMA

Teacher:

MR LIST

4/4/06.

BRIGIDINE COLLEGE RANDWICK

MATHEMATICS HSC

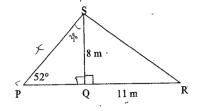
HALF-YEARLY

2006

(TIME: 2 HOURS)

Directions to candidates:

- Write your name at the top of this question paper and each of the 6 sections to be handed in.
- All 6 questions are to be attempted.
- All 6 questions are of equal value.
- All questions are to be answered on separate pages and will be collected separately at the conclusion of this exam.
- All necessary working should be shown for every question.
- Full marks may not be awarded for careless or badly arranged work.


QUESTION 1 (Start a new page)

(a)	Find the value of 11 ⁻²⁻¹ correct to two significant figures.	2
(b)	A merchant buys flour from a wholesaler and then sells it at a profit of 40%. If the merchant sells a packet of flour for \$4.76, what price does he pay the wholesaler per packet of flour?	2
(c)	Find integers a and b such that $(7 + \sqrt{3})^2 = a + b\sqrt{3}$.	2
(d)	Solve the inequation $5-3x \ge 11$.	2
(e) -	Express the recurring decimal 0.57 (i.e. 0.575757) as a simple fraction	2
(f)	Differentiate $(5x^3 + 7)^4$.	2
QU	ESTION 2 (Start a new page)	
	ESTION 2 (Start a new page) Completely factorise $2x^2 - 7x - 15$.	2
(a)	• • • •	2
(a)	Completely factorise $2x^2 - 7x - 15$.	
(a) (b) (c)	Completely factorise $2x^2 - 7x - 15$. Solve $ x - 1 = 4$. The graph of $y = f(x)$ passes through the point $(3, 1)$ and $f'(x) = 4x + 7$.	2
(a) (b) (c)	Completely factorise $2x^2 - 7x - 15$. Solve $ x - 1 = 4$. The graph of $y = f(x)$ passes through the point $(3, 1)$ and $f'(x) = 4x + 7$. Find $f(x)$.	2
(a) (b) (c)	Completely factorise $2x^2 - 7x - 15$. Solve $ x - 1 = 4$. The graph of $y = f(x)$ passes through the point $(3, 1)$ and $f'(x) = 4x + 7$. Find $f(x)$. Find the values of p for which the equation $9x^2 - px + 16 = 0$ has:	2

OUESTION 3

(Start a new page)

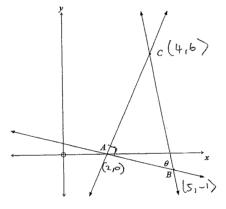
(a)

$$RQ = 11 \text{ m}$$

$$SQ = 8 \text{ m}$$

$$\angle SPQ = 52^{\circ}$$

2


2

2

2

Find the length of SP to the nearest centimetre

(b)

The diagram shows the points A(2, 0), B(5, -1) and C(4, 6). Angle ABC is θ .

- Show the equation of the line AC is 3x y = 6.
- Show the gradient of AB is $-\frac{1}{3}$.
- Show the length of AB is $\sqrt{10}$ units.
- Show AB and AC are perpendicular.,
- Find $\tan \theta$.
- Find the equation of the circle with centre A that passes through B.
- Copy the diagram from the question onto your answer page and shade the region satisfying the inequality $3x - y \le 6$

QUESTION 4

(Start a new page)

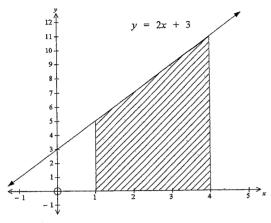
(a) The following table lists the values of a function for three values of x.

х	2.0	3.0	4-0
f(x)	2.6	7.8	1.4

Use three function values to estimate $\int f(x)dx$ by:

- 2 Simpson's rule
- 2 the trapezoidal rule
- (b) The fourth term of an arithmetic series is 22 and the seventh term is 10.
 - Find the common difference.
 - (ii) Find the sum of the first 12 terms.
- (c) The first term of a geometric series is 81 and the fourth term is 3.
 - 1 Find the common ratio.
 - Find the limiting sum of the series.
- (d) A parabola has equation $x^2 = 12(y+2)$.
 - Find the coordinates of the vertex of the parabola.

Find the equation of the directrix of the parabola.


2

2

QUESTION 5

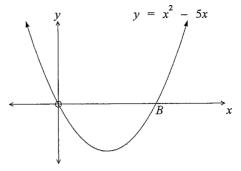
(Start a new page)

(a)

The region which lies between the x-axis and the line y = 2x + 3 from x = 1 to x = 4 is rotated about the x-axis to from a solid. Find the volume of the solid.

- (b) On 1 July 1995 Stephanie invested \$15 000 in a bank account that paid interest at a fixed rate of 8% per annum, compounded annually.
 - (i) Show the amount in the account, after the payment of interest on 1 July 2005 if 2 no additional deposits were made, was \$32 383.87.
 - (ii) In fact Stephanie added \$1000 to her account on 1 July each year, beginning on 3 1 July 1996.

How much was in her account on 1 July 2005 after payment of interest into her account?


(iii) Stephanie's sister, Gemma, invested \$15 000 in an account at another bank on 1 July 1995 and made no further deposits. On 1 July 2005, the balance in Gemma's account was \$53 217.

What was the annual rate of compound interest paid on Gemma's account? (Express your answer as a percentage correct to one decimal point.)

QUESTION 6

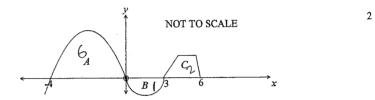
(Start a new page)

(a)

The diagram shows the graph of the function $y = x^2 - 5x$.

(i) Find the x-coordinate of the point B where the curve crosses the positive x-axis.

2


2

2

(ii) Find the area of the region bounded by the curve $y = x^2 - 5x$ and the x-axis.

(b)

(e)

The graph of the function f is shown in the diagram. The area A, below f and above the x-axis from x = -4 to x = 0, is 6 square units. The area B, below the x-axis and above f from x = 0 to x = 3, is 1 square unit. The area C, between f and the x-axis from x = 3 to x = 6, is 2 square units.

Evaluate
$$\int_{-4}^{6} f(x)dx$$

(c) Prove
$$(1 - \sin \theta)(1 + \sin \theta) = \cos^2 \theta$$

Solve for $0^{\circ} \le \theta \le 360^{\circ}$ to the nearest minute where necessary $\tan^{2} \theta - \tan \theta - 2 = 0$

NOT TO SCALE

150 m

25° 200 m

Find the value of x (correct to one decimal place).

1/2 12 HALF-YEARLY 2006 ! MATHEMATICS!

Quedion 1

- (b) \$4.76 = 40% of cost price 1% of cost price = \$4.76:140 / Cost price = \$4.76:140 x 100 = \$3.40
- (c) $(7+13)^2 = a + b\sqrt{3}$ $(7+\sqrt{3})^2 = 49+145 + 3$ = 52+145 $\therefore a = 52$

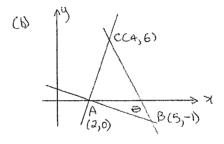
b= 14

- (d) $5-3x \ge 11$ $-3x \ge 6$ $x \le -2$
- (e) 0.57 = 0.575757...Let 8c = 0.575757... (f) 100x = 57.575757... (g) 0 - 0.998c = 578c = 57 = 19 $\sqrt{99}$

(f) het
$$u = 5 \times 2^3 + 7$$

then $\frac{d(5 \times 2^3 + 7)^4}{dx}$
 $= \frac{du^4}{du} \cdot \frac{du}{dx} \qquad \frac{du}{dx} = \frac{d(5 \times 2^3 + 7)}{dx}$
 $= 4u^3 \cdot \frac{d(5 \times 2^3 + 7)}{dx}$
 $= 4(5 \times 2^3 + 7)^3 \times 15 \times 2^3$
 $= 60 \times 2^3 \cdot (5 \times 2^3 + 7)^3$

Duestion 3


(a)

Bm

50° Tr

P G IIm R

In $\triangle SPQ$, $\angle SOP = 90°$ and Sin 52° = 8 SP = 8

(i)
$$m_{AC} = \frac{y_2 - y_1}{x_2 - 3c_1} = \frac{6 - 0}{4 - 2} = \frac{3}{3}$$

3

Wearly whole form got this wrong = 81 $\tan^2\theta - \tan\theta - 2 = 0$ $(\tan\theta - 2)(\tan\theta + 1) = 0$ tan 0 = 2 0=63°26 $x^2 = 12(y+2)$ fan 0 = and 180+63°26 4a = 12 Cany 2 correct answers I mark x= 150° + 200° +2x 150x 200x 6x25 x2= 8121.53... ng a square an incorrect (60) x'-5x= X(X-5)=0

8

 $2x^2 - 7x - 15$ (note + - swapped gets Imark x solving quadratic = I mark I mark for regative gradient I mark for regative concernity |x-1|=4x-1=4 f(x)=4x+7 $f(x) = 2x^2 + 7x + C$ $1 = 2 \times 3^2 + 7 \times 3 + C$ C = -38(i) A= 1/2 [fa)+f(b)] $f(x) = 2x^2 + 7x - 38$ 2.6 + 2× 7.8 + 1.4 | b2-4ac=0 $p^2 - 4 \times 9 \times 16 = 0$ 22=a+3d: 多 ii) 62-4ac >0 $p^{2} - 4 \times 9 \times 16 \ge 0$ $p^{2} - 576 \ge 0$ (p-24) (p+24) ≥ O p==24,p>24v

- 第二篇

The equation of AC is given by
$$y-0=3(x-a)$$
 $y=3x-6$ $3x-6=y$ $3x-y-6=0$ $3x-y=6$

(ii)
$$m_{AB} = \frac{y_2 - y_1}{2x_2 - 2x_1}$$

= $\frac{-1 - 0}{5 - 2}$
= $-\frac{1}{3}$

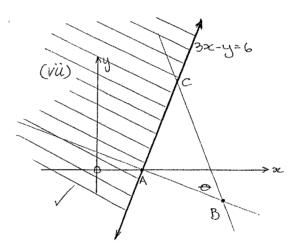
(iii) Length of AB
=
$$\sqrt{(5-2)^2 + (-1-0)^2}$$

= $\sqrt{(5-2)^2 + (-1-0)^2}$
= $\sqrt{(5-2)^2 + (-1-0)^2}$

(iv) If AB+ACare perpendicular then

Now
$$m_{AB} \times m_{AC} = -1$$

 $M_{AB} \times m_{AC} = -\frac{1}{3} \times 3$
 $= -1$


(V) $\triangle ABC$ is right-angled at A as $AB \perp AC$ Thus tan = AC $AC = \sqrt{(4-2)^2 + 6^2}$

$$AC = \sqrt{(4-2)^2 + 6^2}$$

= $\sqrt{40}$
= $2\sqrt{10}$
: $\tan \theta = 2\sqrt{10}$

Centre: (2,0) Radius: 10

$$(3c-2)^{2} + (y-0)^{2} = (\sqrt{10})^{2} / (3c-2)^{2} + y^{2} = 10 / (3c-2)^{2} + y^{2} - 43c+4 = 10$$

$$\frac{\partial R}{\partial x^{2} + y^{2} - 43c} = 6$$

$$3x-y=6$$
 $7=4(0,0)$
 $3x-y=3x0-0$
 $=0-0$
 $=046$

Question 5
ia) V= 11 /y'dx $= \pi \int_{0}^{\infty} (2\alpha + 3)^{2} dx$ = IT (422+12x+9) dre / = TI [\$x3+6x2+921],4 =T [\$x43+6x42+9x4-(\$+6+9)]/ = 201 TT unit 3 (Accept 631.46 unit 3) 6 4 P= \$15000 r = 8% p.a. compounded annually n = 10 years A = P(1+r)" = 15000 (1+0.08)" =\$32383,87 Amounts invested: (ii) 1995 \$15000 at 8% pa for 10yrs →\$15000 x 1.08° 1996 \$1000 at 8% pa for 9yrs →\$1000 x 1.08° 1997 \$1000 "" Byrs →\$\$1000 x 1.08° 1998 \$1000 "" 7yrs →\$1000 x 1.08° 2004 \$1000 " " " lyr ->\$1000 x1.08 2005 \$1000 Balance in account on 1 July 2005 = \$15000 x 1.08 +(1.08 + 1.08 + 1.08 + 1.000 + 1) \$1000 GP with a=1, 1=1.08, n=10 = \$32383.87 (from (i)) +\$1000x (1.080-1) Hocopt with working \$45870.44 = \$46 870.44

(iii) 53 217 = 15000 (1+1)10 $(1+r)^{10} = 53217$ = 10 53 217 -1/ = 13.5% (to 1 dp) /