BRIGIDINE COLLEGE RANDWICK

Year 12 Mathematics Student 14 June 2006 **Teacher** Time 45 minutes Show all necessary working. Neatness may be taken into consideration in the awarding of marks. 1. Determine the following $\int \frac{1}{e^{2x}} dx$ **(1)** $\int \frac{3}{x+1} dx$ b. **(1)** Sin 2x dx **(2)** Evaluate $\int_0^{\frac{\pi}{4}} 2 \operatorname{Sec}^2 x \, dx$ 2. **(2)** Find $\frac{d}{dx} \ln \sqrt{x}$ 3. **(2)** State the domain of the function $y = \ln (5-2x)$. 4. **(2)**

The perimeter of a sector is 40 cm. If the angle at the centre is 3 radians, find the radius of the circle.

(3)

- Prove that the area under the curve $y = e^x$ from x = 0 to $x = \ln 3$ is equal to the area under the curve $y = \frac{4}{x}$ from x = 1 to $x = e^{0.5}$ (Clearly show your working) (4)
- 7. Find $\frac{d}{dx} \ln (x^4 + 1)$, hence or otherwise evaluate $\int_0^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx$ (correct to 3 sig figs).
- 8. a. Sketch the graph of $y = 3\cos 2x$ over the domain $0 \le x \le 2\pi$ indicating important features of the curve. (3)
 - Find the area bounded by the curve and the axes from x = 0 to $x = \frac{\pi}{3}$ (4) (leave your answer in fully simplified exact form).

9. a. If
$$f(x) = e^{-\frac{1}{2}x^2}$$
 find $f'(x)$ and show that $f''(x) = (x^2 - 1)e^{-\frac{1}{2}x^2}$ (2)

- b. Show that there is only one stationary point at (0,1) and determine its nature. (2)
- c. Determine the coordinates of the point(s) of inflection to the curve. (2)
- d. Show that y = f(x) is an even function. (1)
- e. Use the above information to sketch the curve, showing clearly what happens as $x \to \pm \infty$ (2)

BRIGIDINE COLLEGE RANDWICK

YEAR 12 MATHEMATICS ASSESSMENT TASK - 14 June, 2006

MARKING SCHEME

QUESTION 1: Omission of "C" not penalised

- Correct answer $-\frac{1}{2}e^{-2x} + C$: 1 mark
- $3\ln(x+1) + C \text{ or } 3\log(x+1) + C$; 1 mark
- $-\frac{1}{2}\cos 2x + C$: 2 marks $\frac{1}{2}\cos 2x + C$ 1 mark $-\cos 2x + C$: 1 mark $-2\cos 2x + C$: l mark 0 mark $\cos 2x + C$:

QUESTION 2

Correct definite integral, $\begin{bmatrix} 2 & \tan x \end{bmatrix}_0^{\frac{1}{6}}$: 2 or correct evaluation of definite integral: 1 mark

QUESTION 3

$$\ln \sqrt{x} = \ln \left(\frac{1}{x^2} \right) \operatorname{or} \frac{1}{2} \ln x ; \qquad \text{I mark}$$

Correct answer $\frac{1}{2x}$ or appropriate answer from incorrect

Note: Mathematically incorrect statements were penalised.

QUESTION 4

5 - 2x > 0:	1 mark
-------------	--------

Correct answer, $x < \frac{3}{2}$, or appropriate answer following incorrect working: 1 mark

QUESTION 5

Perimeter =
$$2r + r\theta$$
 1 mark
= $5r$: 1 mark
 r = 8cm; $13\frac{1}{3}$ 1 mark

QUESTION 6

$$A_1 = \int_0^{\ln 3} e^x dx$$

Correct integration Imark

Correct evaluation	1 marl

$$A_2 = \int_1^{e^{0.5}} \frac{4}{x} dx$$

Correct integration 1 mark Correct evaluation 1 mark

OUESTION 7

Correct differentiation of $ln(x^4 + 1)$ 1 mark

Correct integration of $\int_{-\infty}^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx = 1 \text{ mark}$

Evaluation of definite integral 1 mark

OUESTION 8

(a) Graph of $y = 3\cos 2x$

Correct shape - cosine curve; includes correct x-intercepts, appropriate scales on axes.

1 mark Correct amplitude I mark Correct period I mark

(b) Correct statement of area 1 mark Correct integration i mark Correct exact values 1 mark Correct simplification 1 mark

QUESTION 9

- (a) Correct f'(x)1 mark Correct f''(x)1 mark
- Stationary point at (0, 1) Note: it is not sufficient to substitute x = 0 into f'(x). This only demonstrates that a stationary point exists for x = 0, not that there is only one stationary point. To show only one stationary point exists it is necessary to solve the equation

$$-xe^{-\frac{1}{2}x^2} = 0$$

Nature of stationary point 1 mark

Year 12 Mathematics Assessment Task - Marking Scheme 14 June 2006 (page 1)

(c) Coordinate(s) of point(s) of inflection 1 mark Showing concavity changes

1 mark

(d) Showing f(-x) = f(x)

• Maximum stationary point at (0, 1) - (b) l mark

(e) Sketching the curve

Points of inflection at (-1, e⁻¹) and (1, e⁻¹) -(c)

The graph is symmetrical about the v-axis - (d)

• The x-axis is an asymptote (above)

Information to be included on graph:

Any two of the of the above 1 mark

All four of the above

2 marks

Year 12 Mathematics Assessment Task - Marking Scheme 14 June 2006 (page 2) 🖋

BRIGIDINE COLLEGE RANDWICK

YEAR 12 MATHEMATICS ASSESSMENT TASK - 14 June, 2006

SOLUTIONS AND ANSWERS

QUESTION 1

$$\int \frac{1}{e^{2x}} dx = \int e^{-2x} dx$$
$$= -\frac{1}{2} e^{-2x} + e^{-2x}$$

(b)
$$\int \frac{3}{x+1} dx = 3\ln(x+1) + C$$

(c)
$$\int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C$$

QUESTION 2

$$\int_{0}^{\frac{\pi}{4}} 2 \sec^{2} x \, dx = \left[2 \tan x \right]_{0}^{\frac{\pi}{4}}$$

$$= 2 \left[\tan \frac{\pi}{4} - \tan 0 \right]$$

$$= 2$$

QUESTION 3

$$\frac{d}{dx}(\ln\sqrt{x}) = \frac{d}{dx}\ln\left(\frac{1}{x}\right)$$
$$= \frac{d}{dx}\left(\frac{1}{2}\ln x\right)$$
$$= \frac{1}{2x}$$

QUESTION 4: State the domain of y = ln(5 - 2x)

The function
$$y = \ln(5 - 2x)$$
 is only defined for $5 - 2x > 0$ $-2x > -5$ $x < \frac{5}{2}$ or $x < 2\frac{1}{2}$ etc

OUESTION 5

QUESTION 5

Perimeter =
$$2r + r\theta$$
 Radius = r
= $2r + r \times 3$
= $5r$
Thus $5r = 40 \text{cm}$
 $r = 8 \text{cm}$ Radius = r

QUESTION 6: Prove that the area under the curve $y = e^x$ from x = 0 to $x = \ln 3$ is equal to the area under

the curve
$$y = \frac{4}{x}$$
 from $x = 1$ to $x = e^{0.5}$.

$$A_1 = \int_0^{\ln 3} e^x dx$$

$$= \left[e^x \right]_0^{\ln 3}$$

$$= e^{\ln 3} - e^0$$

$$= 3 - 1$$

$$= 2$$

$$A_{2} = \int_{1}^{e^{0.5}} \frac{4}{x} dx$$

$$= 4[\ln x]_{0}^{e^{0.5}}$$

$$= 4[\ln e^{0.5} - \ln 1]$$

$$= 4[0.5 - 0]$$

$$= 2$$

$$= A_{1}$$

QUESTION 7: Find $\frac{d}{dx} \ln(x^4 + 1)$, hence evaluate

$$\int_{0}^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx$$
 (correct to 3 sig figs

$$\frac{d}{dx}\ln(x^4+1) = \frac{4x^3}{x^4+1}$$

Now
$$\frac{2x^3}{x^4 + 1} = \frac{1}{2} \times \frac{4x^3}{x^4 + 1}$$

$$\therefore \int_0^{\sqrt{2}} \frac{2x^3}{x^4 + 1} dx = \frac{1}{2} \int_0^{\sqrt{2}} \frac{4x^3}{x^4 + 1} dx$$

$$= \frac{1}{2} \left[\ln(x^4 + 1) \right]_0^{\sqrt{2}}$$

$$= \frac{1}{2} \left[\ln(\sqrt{2}^4 + 1) - \ln(0^4 + 1) \right]$$

$$= \frac{1}{2} [\ln 5 - \ln 1]$$

$$= \frac{1}{2} [\ln 5 - 0]$$

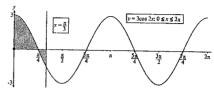
$$= \frac{1}{2} \ln 5$$

$$= 0.805(3 \text{ sig. figs.)}$$

Year 12 Mathematics Assessment Task - Solutions 14 June 2006 (page 1)

OUESTION 8

Sketch the curve $y = 3\cos 2x$ over the domain $0 \le x \le 2\pi$ indicating the important features of the



Find the area bounded by the curve and the axes from x = 0 to $x = \frac{\pi}{2}$ (leave your answer in fully simplified exact form).

Area
$$= \int_{0}^{\frac{\pi}{4}} 3\cos 2x dx + \left| \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 3\cos 2x dx \right|$$

$$= \frac{3}{2} \left[\sin 2x \right]_{0}^{\frac{\pi}{4}} + \left| \frac{3}{2} \left[\sin 2x \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}} \right|$$

$$= \frac{3}{2} \left[\sin \frac{\pi}{2} - \sin 0 + \left| \sin \frac{2\pi}{3} - \sin \frac{\pi}{2} \right| \right]$$

$$= \frac{3}{2} \left[1 - 0 + \left| \frac{\sqrt{3}}{2} - 1 \right| \right]$$

$$= \frac{3}{2} \left[1 - \left(\frac{\sqrt{3}}{2} - 1 \right) \right]$$

$$= \frac{3}{2} \left[2 - \frac{\sqrt{3}}{2} \right]$$

$$= \frac{3}{2} \left[\frac{4}{2} - \frac{\sqrt{3}}{2} \right]$$

$$= \frac{3}{4} \left[4 - \sqrt{3} \right] \text{ unit}^{2}$$

QUESTION 9

(a) If
$$f(x) = e^{-\frac{1}{2}x^2}$$
, find $f'(x)$ and show that
$$f''(x) = (x^2 - 1)e^{-\frac{1}{2}x^2}$$

$$f(x) = e^{-\frac{1}{2}x^2}$$

$$f'(x) = -xe^{-\frac{1}{2}x^2}$$

$$f''(x) = (-x)\frac{de^{-\frac{1}{2}x^2}}{dx} + e^{-\frac{1}{2}x^2}\frac{d(-x)}{dx}$$

$$= (-x)(-xe^{-\frac{1}{2}x^2}) - e^{-\frac{1}{2}x^2}$$

$$= x^2 e^{-\frac{1}{2}x^2} - e^{-\frac{1}{2}x^2}$$

$$= e^{-\frac{1}{2}x^2}(x^2-1)$$

(b) Show that there is only one stationary point at (0, 1) and determine its nature.

For a stationary point f'(x) = 0.

i.e.
$$-xe^{-\frac{1}{2}x^2} = 0$$

As
$$e^{-\frac{1}{2}x^2} > 0$$
 for all x

then
$$x = 0$$

Now
$$f(0) = e^0$$

For x = 0 (i.e. slightly before 0)

$$f'(x) = -(0^{-})e^{-\frac{1}{2}(0^{-})^{2}}$$

$$\to (-)(-)(+) \to (+)$$

i.e. immediately before (0, 1) f'(x) is positive.

For $x = 0^+$ (i.e. slightly after 0)

$$f'(x) = -(0^+)e^{-\frac{1}{2}(0^+)^2} \\ \rightarrow (-)(+)(+) \rightarrow (-)$$

i.e. immediately after (0, 1) f'(x) is negative. .: (0, 1) is a maximum turning point.

Determine the coordinates of the point(s) of inflection to the curve.

For a point of inflection f''(x) = 0 and the

$$e^{-\frac{1}{2}x^2}(x^2-1) = 0$$

$$\begin{array}{ccc} x & -1 & = & 0 \\ x & & = \pm & 1 \end{array}$$

$$x = 1$$
 $f''(1^{-}) = e^{-\frac{1}{2}(1^{-})^{2}} ((1^{-})^{2} - 1) < 0$
 $\Rightarrow (+)(-)$ (1 is a fraction)

$$f''(1^+) = e^{-\frac{1}{2}(1^+)^2} ((1^+)^2 - 1) < 0$$

 $\rightarrow (+)(+) (1^+ \text{ is greater than } 1)$

Thus, as the concavity changes, there is a point of inflection at x = 1.

$$x = -1 f''(-1^-) = e^{-\frac{1}{2}(1^-)^2} ((-1^-)^2 - 1) > 0$$
$$f''(-1^+) = e^{-\frac{1}{2}(1^+)^2} ((-1^+)^2 - 1) < 0$$

Thus, as the concavity changes, there is a point of inflection at
$$x = -1$$
.

The points of inflection are $(-1, e^{-\frac{1}{2}})$ and $(1, e^{-\frac{1}{2}})$

(d) Show that y = f(x) is an even function. For an even function f(-a) = f(a)

$$f(-a) = e^{-\frac{1}{2}(-a)^2}$$

$$f(-a) = e^{-\frac{1}{2}a^{2}}$$

$$= e^{-\frac{1}{2}a^{2}}$$

$$f(a) = e^{-\frac{1}{2}(a)}$$

$$= f(-a)$$

(e) Use the above information to sketch the curve, showing clearly what happens as $x \to \pm \infty$

As $x \to -\infty$, $e^{-\frac{1}{2}x^2} \to 0$, and as $x \to \infty$, $e^{-\frac{1}{2}x^2} \to 0$. Thus the x-axis is an asymptote to the curve.

Information to be included on graph:

- Maximum stationary point at (0, 1) (b)
- Points of inflection at $(-1, e^{-\frac{1}{2}})$ and $(1, e^{-\frac{1}{2}})$ (c)
- The graph is symmetrical about the y-axis (d)
- The x-axis is an asymptote (above)

