BRIGIDINE COLLEGE RANDWICK	

YEAR 12 MATHEMATICS HSC Task 12 June 2007

Teacher:

Time allowed: 45 minutes

Show all necessary working IN PEN

Marks may be deducted for careless or badly arranged work.

Question 1. (11 marks)

- Find the exact value of $\cos \frac{\pi}{6}$
- The 10th term of an arithmetic sequence is 29 and the 15th term is 44. 3
 - Find the value of the common difference and the first term
 - Find the sum of the first 75 terms
- Differentiate the following with respect to x:
 - xtan3x

1

(ii)
$$\frac{x^2}{1 + \cos x}$$

Find the equation of the tangent to the curve $y = \cos 2x$ at the point whose x-coordinate is $\underline{\pi}$.

3

Question 2. Start this question on a new page (12 marks)

Find $\int 3\sec^2 x \, dx$

1

- Sketch $y = -2\sin 2x$ for $0 \le x \le 2\pi$ showing important features. (b)

1

- Find the area bounded by the curve in part i, the x-axis, and $x = \frac{\pi}{4}$ to $x = \pi$
- Consider the series $1+\sqrt{2}+2+\dots$ etc
 - (i) Show that the series is geometric.
 - Find the sum of the first 10 terms. (Leave your answer in exact form)

- PS and QR are arcs of concentric circles with O as the centre. Calculate in terms of π :
 - The area of the shaded region PORS

2

2

The perimeter of the shaded region PQRS

Question 3. Start this question on a new page (12 marks)

- Solve the equation $2\cos 2x = 1$ in the domain $0 \le x \le 2\pi$
- 3

2

1

2

2

- The first three terms of a geometric series are (k + 3) + k + 4 + ...
 - Find the possible values for k. (i)
 - For what value of k does the series have a limiting sum?
 - Find the limiting sum. 2
- When Sarah was born her father deposited \$150 into a bank account earning 8% p.a. interest compounded annually. He decided to deposit \$150 into this account each time Sarah had a birthday and made his last payment on her seventeenth birthday.
 - Show that the initial deposit of \$150 amounted to \$599.40 on her eighteenth birthday.
 - Calculate the total amount that was in the account on Sarah's eighteenth birthday

BRIGIDINE COLLEGE RANDWICK

YEAR 12 MATHEMATICS ASSESSMENT TASK-June, 2007

SOLUTIONS

OUESTION 1

(a)
$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

(b)
$$T_{10} = 29$$

 $T_{15} = 44$

(i) For an arithmetic sequence
$$T_{10} = a(10-1)d$$

$$= a + 9d$$

$$T_{15} = a + 14d$$

Thus

$$a + 9d = 29$$

$$a + 14d = 44$$
① - ②

$$\begin{array}{ccc}
5d & = 15 \\
d & = 3
\end{array}$$

Substitute for d in ①

$$a + 27 = 29$$

 $a = 2$

First term:

Common difference: 3

For an arithmetic sequence

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

= 8475

For
$$n = 75$$

or
$$n = 75$$

 $S_{75} = \frac{75}{2}[2 \times 2 + (75 - 1) \times 3]$

(c)

(i)
$$y = x \tan 3x$$
 (= uv)
 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$
 $= x d \frac{\tan 3x}{dx} + \tan 3x \frac{dx}{dx}$

$$= 3x \sec^2 3x + \tan 3x$$

(ii)
$$y = \frac{x^2}{1 + \cos x} = (\frac{u}{v})$$

$$\frac{dy}{dx} = \frac{u^t v - uv^t}{v^2}$$

$$u = x^2$$
 $\frac{dv}{dx} =$

$$v = 1 + \cos 2x$$
 $\frac{dv}{dx} = -\sin x$

$$\frac{dy}{dx} = \frac{2x(1 + \cos x) - 2x(-\sin x)}{(1 + \cos x)^2}$$

$$(d) y = \cos 2x$$

$$\frac{dy}{dx} = -2\sin 2x$$

At
$$x = \frac{\pi}{6}$$

$$y = \cos\left(2 \times \frac{\pi}{3}\right)$$

$$= \cos\left(\frac{\pi}{3}\right)$$

$$\frac{dy}{dx} = -2\sin\left(2\times\frac{\pi}{6}\right)$$

$$= -2\sin\left(\frac{\pi}{3}\right)$$

$$=$$
 $-2 \times \frac{\sqrt{2}}{2}$

The required tangent has a gradient of $-\sqrt{3}$ and

passes through the point $\left(\frac{\pi}{6}, \frac{1}{2}\right)$. Its equation is

$$y - y_1 = m(x - x_i)$$

$$y-\frac{1}{2}=-\sqrt{3}\left(x-\frac{\pi}{6}\right)$$

$$= -\sqrt{3} x + \sqrt{3} \frac{\pi}{6}$$

$$y = -\sqrt{3} x - \sqrt{3} \frac{\pi}{6} + \frac{1}{2}$$

$$y = -\sqrt{3} x + \left(\frac{1}{2} - \frac{\pi\sqrt{3}}{6}\right)$$

QUESTION 2

(a)
$$\int 3\sec^2 x \, dx = 3 \tan x + C$$

(ii)
$$y$$
 $\frac{2}{1}$
 $\frac{\pi}{4}$
 $\frac{\pi}{2}$
 $\frac{3\pi}{4}$
 π
 $\frac{5\pi}{4}$
 $\frac{5\pi}{4}$
 $\frac{7\pi}{4}$
 $\frac{7\pi}{4}$
 $\frac{2\pi}{4}$

Area =
$$\begin{vmatrix} \frac{\pi}{2} \\ -2\sin 2x \end{pmatrix} dx \begin{vmatrix} \frac{\pi}{2} \\ -2\sin 2x \end{vmatrix} dx$$
=
$$\begin{vmatrix} \cos 2x \frac{\pi}{2} \\ \frac{\pi}{4} \end{vmatrix} + \begin{vmatrix} \cos 2x \frac{\pi}{2} \\ -\cos 2x \frac{\pi}{2} \end{vmatrix} + \cos 2x \frac{\pi}{4} \begin{vmatrix} \cos 2x \pi - \cos 2x \frac{\pi}{2} \\ -\cos \pi - \cos \frac{\pi}{2} \end{vmatrix} + \cos 2\pi - \cos \pi$$
=
$$\begin{vmatrix} -1 - 0 \\ -1 - (-1) \end{vmatrix} = 1 + 1 + 1$$
= 3 unit²

(b) Series:
$$1 + \sqrt{2} + 2 + \dots$$

If the series is geometric then:

$$\frac{T_2}{T_1} = \frac{T_3}{T_2} \text{ (= common ratio)}$$

$$LHS = \frac{\sqrt{2}}{1}$$

$$= \sqrt{2}$$

$$RHS = \frac{2}{\sqrt{2}}$$

$$= \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{2\sqrt{2}}{2}$$

$$= \sqrt{2}$$

$$= LHS$$

... The series is geometric with a=1 and $r=\sqrt{2}$

(ii) For a geometric series:

$$S_{n} = \frac{1(r^{n} - 1)}{r - 1}$$

$$S_{10} = \frac{1((\sqrt{2})^{10} - 1)}{1 - \sqrt{2}}$$

$$= \frac{\left(\frac{1}{2^{2}}\right)^{10} - 1}{\sqrt{2} - 1}$$

$$= \frac{2^{5} - 1}{\sqrt{2} - 1}$$
31

$$= \frac{31}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$

$$= \frac{31(\sqrt{2} + 1)}{2 - 1}$$

$$= 31(\sqrt{2} + 1)$$

(d)

$$\angle POS = 60^{\circ} = \frac{\pi}{3}$$
 randians

Area of a sector = $\frac{1}{2}r^2\theta$ (θ in radians) Area PQRS = Area sector OQR - Area sector OPS $=\frac{1}{2}\times30^2\times\frac{\pi}{3}-\frac{1}{2}\times10^2\times\frac{\pi}{3}$ $\frac{1}{2} \times \frac{\pi}{2} \times (30^2 - 10^2)$ $\frac{\pi}{6} \times 800$

(ii) Perimeter of PQRS
$$= PQ + Arc QR + RS + Arc SP$$

$$= (30-10) + 30 \times \frac{\pi}{3} + (30-10) + 10 \times \frac{\pi}{3}$$

$$= 20 + \frac{30\pi}{3} + 20 + \frac{10\pi}{3}$$

$$= \left(40 + \frac{40\pi}{3}\right) cm$$

QUESTION 3

 $2\cos 2x = 1$; $0 \le x \le 2\pi$ First solve for 2x in $0 \le 2x \le 4\pi$

$$2\cos 2x = 1$$

 $\cos 2x = \frac{1}{2} \implies 1^{st}$ and 4^{th} quadrants

$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
So
$$2x = \frac{\pi}{3}, \left(2\pi - \frac{\pi}{3}\right), \left(2\pi + \frac{\pi}{3}\right), \left(4\pi - \frac{\pi}{3}\right)$$

$$= \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}$$
Now find $x = 0 < x < 2\pi$

Now find $x \ 0 \le x \le 2\pi$ $2x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}$

(÷2)

 $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$

(b)

(i) (k+3)+k+4+... is a geometric series. Thus

$$\frac{k}{k+3} = \frac{4}{k}$$

$$\frac{k^2}{k^2} = 4(k+1)$$

$$k^2 = 4k+1$$

$$k^2 - 4k - 12 = 0$$

$$(k+2)(k-6) = 0$$

$$k = -2, 6$$

(ii) For a limiting sum |r| < 1

For
$$k = -2$$
:
 $r = \frac{4}{-2} = -2 \implies \text{No limiting sum}$
For $k = 6$
 $r = \frac{4}{6} = \frac{2}{3} \implies \text{Limiting sum}$
The series has a limiting sum when $k = 6$.

(iii)
$$k = 6, r = \frac{2}{3}$$

 $S = \frac{a}{1-r}$
 $= \frac{6+3}{1-\frac{2}{3}}$
 $= \frac{9}{\frac{1}{3}}$

The limiting sum is 27.

(c)

$$A = P(1 + r^{n})$$

$$= $150 \times 108^{18}$$

$$= $599.40$$

Total amount in account

$$= (1-08^{18} + 1.08^{17} + 1.08^{16} + ... + 1.08) \times \$150$$

$$= \$150 \times (1.08 + 1.08^2 + ... + 1.08^{17} + 1.08^{18})$$
Now
$$1.08 + 1.08^2 + ... + 1.08^{17} + 1.08^{18}$$
is a geometric series with

$$a = 1.08$$

$$r = 1.08$$

$$n = 18$$

$$S_{18} = \frac{1.08(1.08^{18} - 1)}{1.08 - 1}$$

.. Total amount in account

$$= $150 \times \frac{1.08(1.08^{18} - 1)}{1.08 - 1}$$

= \$6066 9