Marks:

/80

Time: 1 hour 30 minutes

Name: Date:

INSTRUCTIONS TO CANDIDATES

Section A (40 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may not be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.

Congruence and Similarity

- 1. In the diagram, triangle PQR is congruent to triangle STR. $P\hat{R}Q = 30^{\circ}$, $Q\hat{P}R = 20^{\circ}$, $S\hat{T}R = 130^{\circ}$, PR = 11.2 cm and SQ = 6.2 cm. Find the values of
 - (a) $S\hat{R}T$,
 - (b) TR.

Answer (a)
$$\hat{SRT} = \dots ^{\circ}$$
 [1]

(b)
$$TR = \dots$$
 cm [2]

]

2]

?]

(a) Are triangles ABC and PQR similar?

(ii)

3.2 cm 2.5 cm

(b) Figures D and E are similar. Find the value of x.

Answer (a) (i)[1]

(ii)[1]

(b) $x = \dots [2]$

- 3 In the diagram, AB = 8 cm, BC = 6 cm, DE = 9 cm, CE = 5 cm and BC is parallel to DE. Find
 - (a) AC,
 - (b) *BD*.

Answer (a)
$$AC =$$
 cm [2]

(b)
$$BD = \dots$$
 cm [2]

4 (a) In the diagram, BC is parallel to DE. AB = 4 cm, AD = 8 cm and AE = 6 cm. Calculate the length of AC.

(b) Triangle PQR is similar to triangle STR. Given that $\frac{PQ}{ST} = \frac{2}{3}$, find the length of RS.

Answer (a)
$$AC =$$
 cm [2]

(b)
$$RS = \dots$$
 cm [2]

- In the diagram, AB is parallel to CD and EF. CG = 3 cm, EH = 5 cm and ABHE is a parallelogram. Find the numerical value of
 - (a) $\frac{AG}{AH}$,
 - **(b)** $\frac{FH}{AB}$.

- Answer (a)[1]
 - *(b)* [2]
- 6 In the diagram, $D\hat{A}C = E\hat{B}D$, AC = 12 cm, CD = 5 cm and DE = 4 cm.
 - (a) Name a triangle that is similar to triangle AFE.
 - (b) Name a triangle that is similar to triangle ACD.
 - (c) Calculate the length of BE.

- Answer (a) Triangle [1]
 - (b) Triangle.....[1]
 - (c) $BE = \dots$ cm [2]

Test

- In the diagram, AB, CD and EF are parallel. AB = 11 cm, CD = 8 cm, EF = 20 cm and CG = 6 cm. Calculate
 - (a) CE,
 - (b) BG.

.]

!]

 $\dot{}B$

Answer (a)
$$CE =$$
 cm [2]

(b)
$$BG = cm [2]$$

- 8 In the diagram, $P\hat{Q}R = Q\hat{S}R = 90^{\circ}$.
 - (a) Write down an angle which is equal to $R\hat{P}Q$.
 - (b) Given that PR = 20 cm and QR = 12 cm, find the length of SR.

(b)
$$SR = \dots$$
 cm [2]

10

- In the diagram, AD is parallel to CE and BC is parallel to DE. AFE and BFC are straight lines. AB = 3 cm, BD = 4 cm and FC = 6 cm.
 - (a) Write down a triangle that is similar to triangle CEF.
 - (b) Calculate
 - (i) BF,
 - (ii) DE.

(b) (i)
$$BF = \dots$$
 cm [2]

(ii)
$$DE = \dots$$
 cm [1]

- 10 (a) In the diagram, $Q\hat{P}R = Q\hat{S}P$, PR = 14 cm, PQ = 8 cm and QS = 5 cm.
 - (i) Name a pair of similar triangles.
 - (ii) Write down $\frac{QP}{QR}$ as a fraction.
 - (iii) Find the length of PS.

(b) In the diagram, $V\hat{X}W = V\hat{Z}Y$, VY = 3 cm, VZ = 9 cm and ZW = 2 cm.

(i) Name a pair of similar triangles.

(ii) Calculate the length of XY.

- Answer (a) (i)[1]
 - (ii)[1]
 - (iii) $PS = \dots cm [2]$
 - (b) (i)[1]
 - (ii) $XY = \dots$ cm [2]

INSTRUCTIONS TO CANDIDATES

Section B (40 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- In triangle ABC, XY is parallel to BC, BA is parallel to WY and XC meets WY at Z. BX = 4 cm, BW = 12 cm and WC = 6 cm.
 - (a) Name two triangles that are each similar to triangle CWZ.
 - (b) Using similar triangles, calculate
 - (i) WZ,
 - (ii) AX.

(b) (i)
$$WZ = \dots$$
 cm [2]

(ii)
$$AX = \dots$$
 cm [3]

Tesi

- 12 (a) The diagram shows a quadrilateral PQRS with diagonals PR and QS intersecting at T. PT = QT, ST = RT, PS = QR and PQ is parallel to SR.
 - (i) Name a triangle that is congruent to triangle PSQ.
 - (ii) Name a triangle that is similar to triangle PTQ.

utes

arks.

cm,

2]

2]

3]

(iii) Given that PQ = 6 cm, PT = 4 cm and QS = 13 cm, find the length of SR.

(b) Three vertical poles A, B and C are shown in the diagram. The heights of poles A and B are 5 m and 7 m respectively. Pole A is 3 m from Pole B and 9 m from Pole C. The top of the three poles are in a straight line. Find the height of Pole C.

Answer (a)	(1)	mangie	ſĭĵ
	(ii)	Triangle	[1]
	(iii)	<i>SR</i> = cm	[3]

- 13 In the diagram, DG is parallel to BC and AB is parallel to GC. ADB, AHFC and DEFG are straight lines. DE = 9 cm, EF = 12 cm, FG = 15 cm and FC = 13.5 cm.
 - (a) (i) Name a triangle that is similar to triangle CFG.
 - (ii) Calculate the length of AF.
 - (b) (i) Name a triangle that is similar to triangle HEF.
 - (ii) Calculate the length of HF.

Answer (a) (i) Triangle [1]

(ii)
$$AF = \dots$$
 cm [2]

(ii)
$$HF = \dots$$
 cm [3]

()

1]

2]

1].

3]

14 (a) The diagram shows a ladder, AB resting against the roof of the shed PQRS at P. The top of the ladder, B reaches a height of 6.4 m on the wall of the house. The foot of the ladder, A is 3.5 m from the wall of the house. Given that PQ is 2.1 m, find the height of the shed.

- (b) In the diagram, AB is parallel to CD and EC is parallel to BH. AFGD, EFC and BGH are straight lines. Given that AE = 7 cm, EB = 3 cm, BG = 4 cm and FC = 6 cm, calculate
 - (i) *EF*,
 - (ii) *GH*,
 - (iii) DH.

- (ii) $GH = \dots \dots$ cm [2]
- (iii) $DH = \dots$ cm [2]

- (a) Write down a triangle that is similar to triangle ADE.
- (b) Calculate
 - (i) *BD*,
 - (ii) AF.
- (c) Write down the numerical value of $\frac{DC}{CF}$.

2

Answer (a) Triangle.....[1]

(b) (i)
$$BD = \dots$$
 cm [3]

(ii)
$$AF = \dots$$
 cm [2]

- 12. (a) (i) Total monthly salary 1 million = 1 000 000= \$735 000 million $= 10^6$ $= \$(7.35 \times 10^5 \times 10^6)$ $= \$(7.35 \times 10^{5+6})$ Use $10^{11} \times 10^{11} = 10^{11}$ $= \$(7.35 \times 10^{11})$
 - (ii) Average monthly salary per worker (7.35×10^{11}) = \$2625
 - (b) Volume of block $= (3 \times 10^{-2}) \times (5 \times 10^{-2}) \times (8 \times 10^{-2})$ $= 1.2 \times 10^{-4} \text{ cm}^3$ 100 cm = 1 m

(c)
$$A = \sqrt{\frac{2 pq}{r^3}}$$

$$= \sqrt{\frac{2 \times 6.25 \times 10^{-3} \times .8.14 \times 10^{-5}}{(3.91 \times 10^{-7})^3}}$$

$$\approx 1.30 \times 10^4 \text{ (correct to 3 sig. fig.)}$$

- 13. (a) Diameter = 1 392 000 $= 1.392 \times 10^6 \text{ km}$
 - (b) Mass of Earth: Mass of Sun = 1:n $5.976 \times 10^{24} \text{ kg} = \frac{1}{1}$ $1.99 \times 10^{30} \text{ kg}$ 1.99×10^{30} 5.976×10^{24} \approx 333 000 (correct to 3 sig. fig.) \therefore required ratio = 1:333 000.
 - (c) In one hour, the moon travels 36 800 km. Given Distance travelled by the moon in one week
 - $= 168 \times 36800$ 1 week = 7 days = 6182400 $= 7 \times 24 \text{ h}$ = 168 h $\approx 6.18 \times 10^6$ km (correct to 3 sig. fig.)
- 14. (a) $10^2 = 2$, $10^b = 3$, $10^c = 5$ Given $10^{2a+b-3c}$ Use $10^{m+n} = 10^m \times 10^n$ and $=10^{2a}\times 10^b \div 10^{3c}$ $10^{m-n} = 10^m \div 10^n$ $= (10^{a})^{2} \times 10^{b} \div (10^{c})^{3}$ Use $10^{n} = (10^{n})^{n}$. = 0.096 $= 9.6 \times 10^{-2}$

(b)
$$8093.02 = 8000 + 90 + 3 + \frac{2}{100}$$

 $= 8 \times 10^3 + 9 \times 10^1 + 3 \times 10^0 + 2 \times 10^{-2}$
 $= 8 \times 10^3 + 9 \times 10^x + 3 \times 10^y + 2 \times 10^z$
 $\therefore x = 1, y = 0 \text{ and } z = -2.$

- (c) (i) Breadth of rectangle Area of rectangle $=\frac{5.32\times10^{-6} \text{ m}^2}{10^{-6} \text{ m}^2}$ = Length × Breadth $2.8 \times 10^{-3} \text{ m}$ Breadth = $\frac{Area}{}$ $= 1.9 \times 10^{-3} \text{ m}$ Length
 - (ii) Perimeter of rectangle Perimeter of $= 2(2.8 \times 10^{-3} + 1.9 \times 10^{-3})$ rectangle $= 9.4 \times 10^{-3} \text{ m}$ = 2 (Length + Breadth)
- 15. Speed of light = 3×10^5 km/s Given Speed of sound = 1.226×10^3 km/h
 - (a) Time taken = $\frac{130 \text{ km/s}}{3 \times 10^5 \text{ km/s}}$ Time = Distance $= 5 \times 10^{-4} \text{ s}$
 - (b) In 1 hour, (3600 s) sound travels 1.226×10^3 km. In 1 second, sound travels

$$= \frac{1.226 \times 10^{3}}{3600}$$

$$\approx 0.3406$$

$$= 3.41 \times 10^{-1} \text{ km (correct to 3 sig. fig.)}$$

$$1 \text{ h} = 60 \text{ min}$$

$$= 60 \times 60 \text{ s}$$

$$= 3600 \text{ s}$$

(c) Time taken Distance 150 km $3.406 \times 10^{-1} \text{ km/s}$ Speed of sound $\approx 4.40 \times 10^2$ s (correct to $= 3.406 \times 10^{-1} \text{ km/s}$ 3 sig. fig.)

Test 3: Congruence and Similarity

Section A

(a) $S\hat{R}T = P\hat{R}Q$ $=30^{\circ}$

Teacher's Tip

- Use a matching diagram to match the corresponding
- The symbol '=' means 'is congruent to'.

(b)
$$SR = PR = 11.2 \text{ cm}$$

 $QR = SR - SQ$
 $= 11.2 - 6.2$
 $= 5$
 $TR = QR = 5 \text{ cm}$

Teacher's Tip

Congruent Triangles

- 1. Congruent triangles have exactly the same size and shape.
- 2. If two triangles are congruent, then
 - (a) their corresponding angles are equal,
 - (b) their corresponding sides are equal.

3. If
$$\triangle ABC = \triangle PQR$$
, then $\hat{A} = \hat{P}$, $AB = PQ$, $\hat{B} = \hat{Q}$, $BC = QR$, $\hat{C} = \hat{R}$. $AC = PR$.

2. (a) (i)

$$= 57^{\circ}$$

$$\hat{P} = 180^{\circ} - 57^{\circ} - 85^{\circ}$$

$$= 38^{\circ}$$

Since $\triangle ABC$ and $\triangle PQR$ have all their corresponding angles equal to each other, $\triangle ABC$ and $\triangle PQR$ are similar.

Teacher's Tip

If two triangles are similar, then the corresponding angles of the two triangles must be equal:

$$\frac{AB}{PQ} = \frac{3}{2.5} = 1.2$$

$$\frac{BC}{QR} = \frac{2.4}{2} = 1.2$$

$$\frac{AC}{PR} = \frac{4}{3.2} = 1.25$$

$$\frac{AB}{PQ} = \frac{BC}{QR} \neq \frac{AC}{PR}$$

Teacher's Tip.

If two triangles are similar, then the ratio of their corresponding sides of the two triangles must be equal.

 $\therefore \triangle ABC$ is not similar to $\triangle PQR$.

Teacher's Tip

Similar Triangles

- Similar triangles have the same shape but may vary in size.
- 2. If two triangles are similar, then
 - (a) their corresponding angles are equal,
 - (b) their corresponding sides are in the same ratio.
- 3. If $\triangle ABC$ is similar to $\triangle PQR$, then

$$\hat{A} = \hat{P}$$

$$\hat{B} = \hat{Q}$$
,

$$\widehat{C}=\widehat{R}.$$

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$

(b)

Since D and E are similar,

$$\frac{x}{17.5} = \frac{12.6}{9}$$

Ratios of corresponding sides are equal.

$$x = \frac{12.6}{9} \times 17.5$$

3.

Teacher's Tip

 $\triangle ABC$ is similar to $\triangle ADE$ since $B\widehat{A}C = D\widehat{A}E$ (\widehat{A} is common.), $\widehat{ABC} = \widehat{ADE}$ (corr. \angle s, BC // DE), $\widehat{ACB} = \widehat{AED}$ (corr. \angle s, BC // DE).

$$\frac{AC}{AC+5} = \frac{6^2}{29^3}$$

$$3AC = 2(AC + 5)$$

$$3AC = 2AC + 10$$

$$AC = 10 \text{ cm}$$

(b)
$$\frac{AD}{AB} = \frac{DE}{BC}$$

Ratios of corresponding sides are equal.

$$\frac{AD}{8} = \frac{9}{6}$$

$$AD = \frac{9}{6} \times 8$$

$$BD = AD - AB$$
$$= 12 - 8$$

4. (a)

Teacher's Tip

 $\triangle ABC$ is similar to $\triangle AED$ since

 $B\widehat{A}C = E\widehat{A}D$ (vert. opp. \angle s),

 $\widehat{ABC} = \widehat{AED}$ (alt. \angle , $BC \parallel DE$),

 $A\hat{C}B = A\hat{D}E$ (alt. \angle s, $BC \parallel DE$).

 $\triangle ABC$ is similar to $\triangle AED$.

$$\therefore \frac{AC}{AD} = \frac{AB}{AE}$$

Ratios of corresponding sides are equal.

$$\frac{AC}{8} = \frac{4}{6}$$

$$AC = \frac{4}{6} \times 8$$

$$=5\frac{1}{3}$$
 cm

(b)

Since $\triangle PQR$ is similar to $\triangle STR$,

$$\frac{RS}{RP} = \frac{ST}{PQ}$$

Ratios of corresponding sides are equal.

$$\frac{RS}{6} = \frac{3}{2}$$

Given $\frac{PQ}{ST} = \frac{2}{3}$

$$RS = \frac{3}{2} \times 6$$
$$= 9 \text{ cm}$$

 $\therefore \frac{ST}{PQ} = \frac{3}{2}$

5.

(a) $\triangle ACG$ is similar to $\triangle AEH$.

$$\therefore \frac{AG}{AH} = \frac{CG}{EH}$$
$$= \frac{3}{5}$$

(b) $\triangle AGD$ is similar to $\triangle AHF$.

$$\therefore \frac{AD}{AF} = \frac{AG}{AH}$$

 $\triangle DHF$ is similar to $\triangle DBA$.

$$\frac{FH}{AB} = \frac{DF}{DA}$$

$$= \frac{AF - AD}{DA}$$

$$= \frac{5 - 3}{3}$$

$$= \frac{2}{3}$$

6.

(a) $\triangle AFE$ is similar to $\triangle BFC$.

 $C\hat{B}F = E\hat{A}F$ (Given)

 $B\widehat{F}C = A\widehat{F}E$ (vert. opp. \angle s)

 $A\hat{E}F = B\hat{C}F$

 $\triangle AFE$ is similar to $\triangle BFC$.

(b) $\triangle ACD$ is similar to $\triangle BED$.

 $E\hat{B}D = C\hat{A}D$ (Given) $B\hat{D}E = A\hat{D}C$ (\hat{D} is common.)

 $\therefore B\hat{E}D = A\hat{C}D$

 $\therefore \triangle ACD$ is similar to $\triangle BED$.

Teacher's Tip

If necessary, redraw the two similar triangles ACD and BED to help you visualize.

Since $\triangle ACD$ is similar to $\triangle BED$,

$$\frac{BE}{AC} = \frac{DE}{DC}$$

$$\frac{BE}{12} = \frac{4}{5}$$

$$BE = \frac{4}{5} \times 12$$

$$= 9\frac{3}{5} \text{ cm}$$

(a) $\triangle GCD$ is similar to $\triangle GEF$.

$$\therefore \frac{GE}{GC} = \frac{EF}{CD}$$

$$\frac{GE}{6} = \frac{20}{8}$$

$$GE = \frac{20}{8} \times 6$$

$$= 15 \text{ cm}$$

$$CE = 15 - 6$$

$$= 9 \text{ cm}$$

(b) $\triangle AGB$ is similar to $\triangle DGC$.

$$\therefore \frac{BG}{CG} = \frac{AB}{DC}$$

$$\frac{BG}{6} = \frac{11}{8}$$

$$BG = \frac{11}{8} \times 6$$

$$= 8\frac{1}{4} \text{ cm}$$

Teacher's Tip

Split $\triangle PQR$ into two similar triangles, $\triangle PQR$ and $\triangle OSR$.

$$P\hat{Q}R = Q\hat{S}R = 90^{\circ}$$
 (Given)
 $P\hat{R}Q = Q\hat{R}S$ (\hat{R} is common.)

$$\therefore R\hat{P}Q = R\hat{Q}S$$

(a) $R\hat{P}Q = R\hat{Q}S$

(b) $\triangle RPQ$ is similar to $\triangle RQS$.

$$\frac{SR}{QR} = \frac{QR}{PR}$$

$$\frac{SR}{12} = \frac{12}{20}$$

$$SR = \frac{12}{20} \times 12$$

$$= 7\frac{1}{5} \text{ cm}$$

(a) $\triangle CEF$ is similar to $\triangle BAF$.

AFB = EFC (vert. opp. \angle s) $A\widehat{B}F = E\widehat{C}F \text{ (alt. } \angle S, AB \text{ // } CE)}$ $B\widehat{A}F = C\widehat{E}F \text{ (alt. } \angle S, AB \text{ // } CE)$ $\triangle \triangle CEF \text{ is similar to } \triangle BAF.$

(b) (i) BDEC is a parallelogram since BD // CE and BC // DE. CE = BD = 4 cm Since $\triangle CEF$ is similar to $\triangle BAF$,

$$\frac{BF}{CF} = \frac{AB}{EC}$$

$$\frac{BF}{6} = \frac{3}{4}$$

$$BF = \frac{3}{4} \times 6$$

$$= 4\frac{1}{6} \text{ cm}$$

(ii)
$$DE = BC$$
 since $BDEC$ is a parallelogram.

$$= BF + FC$$

$$= 4\frac{1}{2} + 6$$

$$= 10\frac{1}{2}$$
 cm

(i) $\triangle PQR$ and $\triangle SQP$ are similar.

 $Q\hat{P}R = Q\hat{S}P$ (Given) $P\hat{Q}R = S\hat{Q}P$ (\hat{Q} is common.) $\therefore P\hat{R}Q = S\hat{P}Q$

 $\therefore \triangle PQR$ is similar to $\triangle SQP$.

(ii) Since $\triangle PQR$ is similar to $\triangle SQP$,

$$\frac{QP}{QR} = \frac{QS}{QP}$$
$$= \frac{5}{8}$$

(iii)
$$\frac{PS}{PR} = \frac{QS}{QP}$$

 $\frac{PS}{14} = \frac{5}{8}$
 $PS = \frac{5}{8} \times 14$
 $= 8\frac{3}{4}$ cm

(b)

(i) $\triangle VXW$ and $\triangle VZY$ $V\hat{X}W = V\hat{Z}\hat{Y}$ (Given) are similar.

 $X\hat{V}W = Z\hat{V}Y(\hat{V} \text{ is common.})$ $\therefore V \hat{W} X = V \hat{Y} Z$. 'ΔVXW is similar to ΔVZY . \otimes

(ii)

Since $\triangle VXW$ is similar to $\triangle VZY$,

$$\frac{VX}{VZ} = \frac{VW}{VY}$$

$$\frac{VX}{9} = \frac{11}{3}$$

$$VX = \frac{11}{3} \times 9$$

$$= 33 \text{ cm}$$

$$XY = VX - VY$$

$$= 33 - 3$$

$$= 30 \text{ cm}$$

Section B

11.

(a) $\triangle CBX$ and $\triangle XYZ$.

 ΔCBX is similar to ΔCWZ . $W\hat{C}Z = B\hat{C}X (\hat{C} \text{ is common.})$ $C\widehat{W}Z = \widehat{CBX}$ (con. $\angle s$, $\widehat{WZ}/\widehat{IBX}$) $\widehat{CZW} = \widehat{CXB}$ (corr. $\angle s$, $WZ \parallel BX$) $\triangle XYZ$ is similar to $\triangle CWZ$. $C\widehat{Z}W = X\widehat{Z}Y$ (vert. opp. $\angle s$) $\hat{WCZ} = \hat{YXZ} \text{ (alt. } \hat{\angle s}, \hat{XY} \text{ (WC)}$ $Z\hat{C}W = Z\hat{X}Y$ (alt. $\angle s$, XYHWC)

Teacher's Tip Since $\triangle CBX$ is similar to $\triangle CWZ$ and $\triangle CWZ$ is similar

 $\triangle CBX$ and $\triangle XYZ$ are similar to $\triangle CWZ$.

(b) (i) Since
$$\triangle CWZ$$
 is similar to $\triangle CBX$,

$$\frac{WZ}{BX} = \frac{CW}{CB}$$

$$\frac{WZ}{4} = \frac{6}{6+12}$$

$$WZ = \frac{6}{18} \times 4$$

$$= 1\frac{1}{3} \text{ cm}$$

(ii) $\triangle AXY$ is similar to $\triangle ABC$.

$$\frac{AX}{AB} = \frac{XY}{BC}$$

$$\frac{AX}{AX + 4} = \frac{12^2}{18_3}$$

$$3AX = 2(AX + 4)$$

$$3AX = 2AX + 8$$

$$AX = 8 \text{ cm}$$

$$XY = BW = 12 \text{ cm}$$
since BWYX is a parallelogram.

12. (a)

(i) $\triangle PSQ = \triangle QRP$

SQ = RP (Given) PQ = QPAll the corresponding sides of both triangles are equal: $\triangle PSQ = \triangle QRP$

PS = QR (Given)

(ii) $\triangle PTQ$ is $P\hat{T}Q$ is similar to $P\hat{Q}Q$ $\triangle RTS$.

(iii) QT = PT = 4 cm

 $P\widehat{T}Q = R\widehat{T}S$ (vert. opp. \angle s) $P\widehat{Q}T = R\widehat{S}T$ (alt. \angle s, PQ // SR). $Q\widehat{P}T = S\widehat{R}T$ (alt. \angle s, PQ // SR). $\therefore \triangle PTQ$ is similar to $\triangle RTS$.

Since
$$\triangle PTQ$$
 is similar to $\triangle RTS$,
$$\frac{SR}{QP} = \frac{ST}{QT}$$

$$\frac{SR}{6} = \frac{9}{4}$$

$$SR = \frac{9}{4} \times 6$$

$$= 13\frac{1}{2} \text{ cm}$$

ST = 13 - 4 = 9 cm

(b)

Draw a straight line joining the tops of the 3 poles and extend this line to the horizontal ground.

 $\triangle PQT$ is similar to $\triangle PRU$.

$$\frac{PT}{PU} = \frac{QT}{RU}$$

$$\frac{PT}{PT+3} = \frac{5}{7}$$

$$7PT = 5(PT+3)$$

$$7PT = 5PT+15$$

$$2PT = 15$$

$$PT = \frac{15}{2} = 7\frac{1}{2} \text{ m}$$

 $\triangle PQT$ is similar to $\triangle PSV$.

$$\frac{SV}{QT} = \frac{PV}{PT}$$

$$\frac{SV}{5} = \frac{7\frac{1}{2} + 9}{7\frac{1}{2}}$$

$$SV = \frac{16\frac{1}{2}}{7\frac{1}{2}} \times 5$$

$$= 11 \text{ m}$$

.. the height of Pole C is 11 m.

13. D = F $13.5 \qquad 13.5$ $B \qquad C$

(a) (i) $\triangle CFG$ is similar to $\triangle AFD$.

 $\widehat{CFG} = \widehat{AFD}$ (vert. opp. \angle s) $\widehat{FCG} = \widehat{FAD}$ (alt. \angle s, $GC \parallel AD$) $\widehat{FGC} = \widehat{FDA}$ (alt. \angle s, $GC \parallel AD$) $\therefore \triangle CFG$ is similar to $\triangle AFD$. (ii) Since $\triangle CFG$ is similar to $\triangle AFD$,

$$\frac{AF}{CF} = \frac{DF}{GF}$$

$$\frac{AF}{13.5} = \frac{9 + 12}{15}$$

$$AF = \frac{21}{15} \times 13.5$$

= 18.9 cm

(b) (i) $\triangle HEF$ is similar to $\triangle HBC$.

$$E\hat{H}F = B\hat{H}C$$
 (\hat{H} is common.)

$$H\hat{E}F = H\hat{B}C$$
 (corr. $\angle s$, $EF \parallel BC$)

 $H\hat{F}E = H\hat{C}B$ (corr. $\angle s$, EF // BC)

 $\therefore \triangle HEF$ is similar to $\triangle HBC$.

(ii) Since $\triangle HEF$ is similar to $\triangle HBC$,

$$\frac{HF}{HC} = \frac{EF}{BC}$$

$$\frac{HF}{HF + 13.5} = \frac{\cancel{12}^{1}}{\cancel{36}_{3}}$$

$$BC = DG$$
$$= 9 + 12 + 15$$

$$3HF = HF + 13.5$$

$$2HF = 13.5$$

$$HF = \frac{13.5}{2}$$

$$= 6.75$$
 cm

14. (a)

 $\triangle BPQ$ is similar to $\triangle BAR$.

$$\therefore \frac{BQ}{BR} = \frac{PQ}{AR}$$

$$P\hat{B}Q = \hat{A}\hat{B}R'(\hat{B}')$$
 is common.)

$$\frac{BQ}{64} = \frac{2.1}{2.1}$$

$$B\hat{P}Q = B\hat{A}R \text{ (corr.} \angle s, PQ \text{ // } AR)$$

 $B\hat{Q}P = B\hat{R}A \text{ (corr.} \angle s, PQ \text{ // } AR)$

$$3.3 \therefore \triangle BPQ \text{ is similar to } \triangle BAR$$

$$3Q = \frac{2.1}{3.5} \times 6.4$$

$$= 3.84 \text{ m}$$

$$QR = BR - BQ$$

$$= 6.4 - 3.84$$

$$= 2.56 \text{ m}$$

: the height of the shed is 2.56 m.

(b)

(i) $\triangle AEF$ is similar to $\triangle ABG$.

$$\therefore \frac{EF}{BG} = \frac{AE}{AB}$$

$$\frac{EF}{A} = \frac{7}{7+3}$$

$$\frac{EF}{4} = \frac{7}{7+3}$$
$$EF = \frac{7}{10} \times 4$$

= 2.8 cm

(ii) BH = ECSince BHCE is a parallelogram. = 2.8 + 6

$$= 2.8 + 6$$

= 8.8 cm

$$GH = BH - BG$$

$$= 8.8 - 4$$

$$= 4.8 \text{ cm}$$

(iii) $\triangle ABG$ is similar to $\triangle DHG$.

$$\therefore \frac{DH}{AB} = \frac{GH}{GB}$$

$$\frac{DH}{7+3} = \frac{4.8}{4}$$

$$DH = \frac{4.8}{4} \times 10$$

15.

(a) $\triangle ADE$ is similar to $\triangle ABC$.

 $B\hat{A}C = D\hat{A}E$ (\hat{A} is common.)

 $\widehat{ABC} = \widehat{ADE}$ (corr. $\angle s$, $BC \parallel DE$)

 $A\hat{C}B = A\hat{E}D$ (corr. $\angle s$, $BC \parallel DE$). ∴ △ABC is similar to △ADE. (b) (i) Since $\triangle ABC$ is similar to $\triangle ADE$,

$$\frac{AB}{AD} = \frac{BC}{DE}$$

$$\frac{AB}{10} = \frac{5}{8}$$

$$AB = \frac{5}{8} \times 10$$

$$= 6\frac{1}{4} \text{ cm}$$

$$BD = AD - AB$$

$$= 10 - 6\frac{1}{4}$$

$$= 3\frac{3}{4} \text{ cm}$$

(ii) $\triangle DBC$ is similar to $\triangle DAF$.

$$\therefore \frac{AF}{BC} = \frac{DA}{DB}$$

$$\frac{AF}{5} = \frac{10}{3\frac{3}{4}}$$

$$AF = \frac{10}{3\frac{3}{4}} \times 5$$

$$= 13\frac{1}{3} \text{ cm}$$

(c) $\triangle CDE$ is similar to $\triangle CFA$.

$$\therefore \frac{DC}{CF} = \frac{DE}{AF}$$

$$\frac{DC}{CF} = \frac{8}{13\frac{1}{3}}$$

$$= 8 \times \frac{3}{40}$$

$$= \frac{3}{5}$$

Test 4: Scales and Maps

1. (a) 1 cm represents 20 cm or 0.2 m.

.. 0.6 m is represented by

$$\frac{0.6}{0.2}$$
 cm = 3 cm.

The length of the handle bar on the model is 3 cm.

100 cm = 1 m

 $20 \text{ cm} = \frac{20}{100} \text{ m}$ = 0.2 m

Teacher's Tip

A scale of $\frac{1}{20}$ means a length of 1 cm on the model represents an actual length of 20 cm.

(b) 1 cm represents 0.2 m. ∴ 1 cm² represents $(0.2 \text{ m})^2 = 0.04 \text{ m}^2$. \therefore 12 cm² represents 12 × 0.04 = 0.48 m². The actual area of the front wheel is 0.48 m².

Teacher's Tip

The area scale of a map is the square of its linear scale. If the linear scale is 1:n, then the area scale is $(1)^2:(n)^2=1:n^2.$

(a) 1 cm represents 200 cm or 2 m. \therefore 3.5 cm represents $3.5 \times 2 = 7$ m. The width of the shop is 7 m.

(b) 2 m is represented by 1 cm. 1 m is represented by $\frac{1}{2}$ cm.

 \therefore 1 m² is represented by $\left(\frac{1}{2} \text{ cm}\right)^2 = \frac{1}{4} \text{ cm}^2$.

 \therefore 54 m² is represented by 54 $\times \frac{1}{4}$ = 13.5 cm². The area of the plan representing the shop space is 13.5 cm².

 $1 \text{ km} = 100\ 000 \text{ cm}$ 3. (a) 4 cm: 2.5 km = 4 cm : 250 000 cm Divide the ratio by 4. = 1:62500

 \therefore the R.F. of the map is $\frac{1}{62500}$

Teacher's Tip

The representative fraction (R.F.) expresses the linear scale of a map 1: n in the form $\frac{1}{n}$:

(b) 1 cm represents 50 000 cm or $\frac{1}{2}$ km.

 $\therefore 1 \text{ cm}^2 \text{ represents } \left(\frac{1}{2} \text{ km}\right)^2 = \frac{1}{4} \text{ km}^2.$

 \therefore 20 cm² represents 20 × $\frac{1}{4}$ = 5 km².

The actual area of the wildlife sanctuary is 5 km2.

Area of rectangle $ABCD = 5 \times 3 = 15 \text{ cm}^2$ 1 cm represents 200 cm or 2 m. \therefore 1 cm² represents (2 m)² = 4 m². \therefore 15 cm² represents 15 × 4 = 60 m². The actual area of the rectangular plot of land is 60 m².