| XΙΔ | ME   |  |
|-----|------|--|
| IVN | ric. |  |

## CENTRE OF EXCELLENCE IN MATHS TUITION



## MATHEMATICS SPECIMEN PAPER 1

**SUM TO INFINITY - GP** 

- 1. The second term of a geometric series is 60 and the fourth term is 21.6.
  - (a) Find possible values of the common ratio and the corresponding first term of the series. [4]

(b) Find the sum to infinity of the series, taking the positive value of the common ratio. [2]

| 2.  | The third term of a geometric series is 90 and the sixth term is $3\frac{1}{3}$ .               |     |
|-----|-------------------------------------------------------------------------------------------------|-----|
| (a) | Find the common ratio and the first term of the geometric series.                               | [4] |
| (b) | Find the sum to infinity of the series.                                                         | [2] |
|     | The sum of the first three terms of a geometric series is 27.1, and the sum to infinity is 100. |     |
| (a) | Write down two equations involving $a$ and $r$ , the first term and common ratio respectively.  | [2] |
| (b) | Hence find the values of $a$ and $r$ .                                                          | [2] |

[1]

| C.E. | M. – MATHS SPECIMEN PAPER I – SUM TO INFINITY G.P.                                         | 3         |
|------|--------------------------------------------------------------------------------------------|-----------|
| (c)  | Write down an expression for the sum of $n$ terms of this series.                          | [1]       |
| (d)  | How many terms would be required for the sum to be greater than 95?                        | [3]       |
| 4.   | Given the infinite geometric series $1 - 2x + 4x^2 - 8x^3 + \dots$                         |           |
| (a)  | Find the common ratio.                                                                     | [1]       |
| (b)  | Write down an expression for the <i>n</i> th term.                                         | [1]       |
| (c)  | Find the range of values of $x$ for which the series has a sum to infiniand find this sum. | ty<br>[1] |
| (d)  | Given $x = 0.3$ find the sum of the first 10 terms.                                        | [1]       |
|      |                                                                                            |           |

Find the difference between the sum of the first 10 terms and the sum to

infinity. Express this answer in standard form.

(e)

[2]

| 5.        | A rubber ball is dropped from a height of 2m. It rises to a height of 1.6m and falls again. The heights to which it rises after each bounce are in geometric sequence. |     |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| (a)       | Find the height to which the ball rises after the seventh bounce.                                                                                                      | [3] |  |
| (b)       | Find the total distance travelled by the ball.                                                                                                                         | [3] |  |
| 6.<br>(a) | The fifth term of a geometric series is 144 and the eighth term is –18. Find the common ratio.                                                                         | [3] |  |
|           |                                                                                                                                                                        |     |  |

(b)

Find the sum to infinity.

## **SOLUTIONS:**

1. (a) 
$$ar = 60$$
 -{1}  
 $ar^3 = 21.6$  -{2}

$$\frac{\{2\}}{\{1\}} \qquad \frac{ar^3}{ar} = \frac{21.6}{60}$$

$$r^2 = 0.36$$

$$r = \pm 0.6$$

Substitute r = 0.6 in  $\{1\}$ 

$$a \times 0.6 = 60$$
$$a = 100$$

Substitute r = -0.6 in  $\{1\}$  a = -100

(b) The sum to infinity 
$$S\infty = \frac{a}{1-r}$$
 if  $|r| < 1$ 

Taking 
$$r = 0.6$$
 
$$S\infty = \frac{100}{1 - 0.6}$$
$$S\infty = 250$$

2. (a) 
$$ar^{2} = 90 \qquad -\{1\}$$

$$ar^{5} = 3\frac{1}{3} \qquad -\{2\}$$

$$\frac{2}{\{1\}} \qquad \frac{ar^{5}}{ar^{2}} = \frac{3\frac{1}{3}}{90}$$

$$r^{3} = \frac{10}{3} \times \frac{1}{90}$$

$$r^{3} = \frac{1}{27}$$

$$r = \sqrt[3]{\frac{1}{27}}$$

$$r = \frac{1}{3}$$

Substitute  $r = \frac{1}{3}$  in  $\{1\}$ 

$$a\left(\frac{1}{3}\right)^2 = 90$$

$$a \times \frac{1}{9} = 90$$

$$a = 810$$

(b) The sum to infinity  $S\infty = \frac{a}{1-r} \quad \text{if } |r| < 1$  $= \frac{810}{\left(1 - \frac{1}{3}\right)}$  $S\infty = 1,215$ 

3. (a) 
$$a + ar + ar^{2} = 27.1 -\{1\}$$
$$\frac{a}{(1-r)} = 100 -\{2\}$$

(b) From {2} a = 100(1-r)Substitute in {1}  $100(1-r) + 100r(1-r) + 100r^2(1-r) = 27.1$   $\Rightarrow 100 - 100r^3 = 27.1$   $100(1-r^3) = 27.1$   $(1-r^3) = 0.271$   $r^3 = 1-0.271$   $r^3 = 0.729$   $r = \sqrt[3]{0.729}$ r = 0.9

$$\begin{array}{rcl}
 a & = & 100(1 - 0.9) \\
 a & = & 10
\end{array}$$

(c) Sum of n terms of a geometric series is

$$S_n = a \frac{(1-r^n)}{(1-r)}$$

$$= 10 \frac{(1-0.9^n)}{(1-0.9)}$$

$$S_n = 100(1-0.9^n)$$

$$a\left(\frac{1}{3}\right)^2 = 90$$

$$a \times \frac{1}{9} = 90$$

$$a = 810$$

(b) The sum to infinity  $S\infty = \frac{a}{1-r}$  if |r| < 1  $= \frac{810}{\left(1 - \frac{1}{3}\right)}$   $S\infty = 1,215$ 

3. (a) 
$$a + ar + ar^{2} = 27.1 -\{1\}$$
$$\frac{a}{(1-r)} = 100 -\{2\}$$

(b) From  $\{2\}$  a = 100(1-r)Substitute in  $\{1\}$   $100(1-r) + 100r(1-r) + 100r^2(1-r) = 27.1$   $\Rightarrow 100 - 100r^3 = 27.1$   $100(1-r^3) = 27.1$   $(1-r^3) = 0.271$   $r^3 = 1-0.271$   $r^3 = 0.729$   $r = \sqrt[3]{0.729}$ r = 0.9

(c) Sum of n terms of a geometric series is

erric series is
$$S_n = a \frac{(1-r^n)}{(1-r)}$$

$$= 10 \frac{(1-0.9^n)}{(1-0.9)}$$

$$S_n = 100(1-0.9^n)$$

\_\_\_\_\_

(d) If 
$$S_n > 95$$
  
 $100(1 - 0.9^n) > 95$   
 $\div 100$   $1 - 0.9^n > 0.95$   
 $\Rightarrow$   $0.9^n < 0.05$   
Take ln of both sides

 $\Rightarrow$  29 terms would be required for the sum to be greater than 95.

4. (a) Common ratio 
$$r = \frac{T_2}{T_1}$$

$$= -\frac{2x}{1}$$

$$r = -2x$$

- (b) *n*th term of a geometric series is  $T_n = ar^{n-1}$   $= 1(-2x)^{n-1}$   $T_n = (-1)^{n-1}(2x)^{n-1}$
- (c) In order that the series has a sum to infinity then |r| < 1 |-2x| < 1

The sum to infinity of a geometric series

$$S\infty = \frac{a}{1-r}$$

$$= \frac{1}{1-(-2x)}$$

$$S\infty = \frac{1}{(1+2x)}$$

(d) 
$$x = 0.3$$
 :  $r = -2 \times 0.3$   
= -0.6

Sum of the first *n* terms of a geometric series is

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum of the first 10 terms  $S_{10} = \frac{1(1-(-0.6)^{10})}{(1-(-0.6))}$ 

 $S_{10} = 0.6212209$  to 7 decimal places.

(e) The sum to infinity, 
$$S\infty = \frac{a}{1-r}$$

$$= \frac{1}{1-(-0.6)}$$

$$= 0.625$$

$$\therefore S\infty - S_{10} = 0.625 - 0.6212209$$

$$= 0.003779$$

$$S\infty - S_{10} = 3.8 \times 10^{-3}$$

5. (a) 
$$h_1 = 2$$
  
 $h_2 = 1.0$ 

As these heights are in geometric sequence

$$r = \frac{1.6}{2}$$

$$r = 0.8$$

The height to which the ball rises after the seventh bounce =  $h_8$ 

$$T_n = ar^{n-1}$$
  
 $h_8 = 2 \times 0.8^{8-1}$   
 $h_8 = 0.42 \text{m to 2 d.p.}$ 

(b) The total distance travelled by the ball is the sum to infinity  $2 + 2 \times 1.6 + 2 \times 1.28 + \dots$ 

After each bounce the ball rises and falls the same distance = 2 + 2[1.6 + 1.28 + ....]

$$S\infty = 1.6 + 1.28 + \dots$$

$$S\infty = \frac{1.6}{1 - 0.8}$$

:. The distance travelled by the ball =  $2 + 2 \times 8$ The distance travelled by the ball = 18m

6. (a) 
$$T_5 = ar^4 = 144 \dots (1)$$

$$T_8 = ar^7 = -18 \dots (2)$$

(2) ÷(1) 
$$\frac{T_8}{T_5} = \frac{ar^7}{ar^4} = \frac{-18}{144}$$

$$r^3 = -\frac{1}{8}$$

Common ratio  $r = -\frac{1}{2}$ 

First term is 
$$a = \frac{144}{\left(-\frac{1}{2}\right)^4} = 2304$$

(b) 
$$S_{\infty} = \frac{a}{1-r} = \frac{2304}{1+\frac{1}{2}} = 1536$$