C.E.M.TUITION

Student Name :_____

Review Topic: Integration

(HSC - PAPER 4)

Year 12 - 2 Unit

19. Calculate the volume of revolution formed when the curve $x^2 + 2y^2 = 8$ is rotated about the y axis.

- 20. Consider the parabola $x^2 = 16y$.
 - (a) (i) Write down the coordinates of the focus and sketch the parabola.
 - (ii) A line is drawn through the focus parallel to the x axis. Calculate the area contained within the parabola below this line.
 - (b) That section of the parabola between x = 0 and x = 4 is rotated about the x axis. Calculate the volume so formed.

21.

(a) If y = g(x) is an odd function, write down the value of

$$\int_{-2}^{2} g(x) \ dx.$$

(b) If that part of the curve y = g(x) is a quadrant of a circle, calculate the area between the curve y = g(x) and the x axis for $-2 \le x \le 2$.

22.

The figure illustrated represents the function y = h(x) and consists of two straight lines and two semicircles of radius 1 unit.

- (a) Calculate the value of $\int_{-3}^{5} h(x) dx$.
- (b) Find the area contained between y = h(x) and the x axis.

- 23. For even function $\phi(x)$ it has been noted that $\int_0^3 \phi(x) dx = 8.5$.
 - (a) Evaluate $\int_{-3}^{3} \phi(x) dx$.
 - (b) If $\phi(x)$ is completely above the x axis, calculate the area between the curve and the x axis for $-3 \le x \le 3$.

YEAR 12 - 2 UNIT REVISION - INTEGRATION (PAPER 4) - SOLUTIONS PAGE 6

Now
$$V = \pi \int_{-2}^{2} x^{2} dy$$

$$= \pi \int_{-2}^{2} (8 - 2y^{2}) dy$$

$$= 2\pi \int_{0}^{2} (8 - 2y^{2}) dy$$
Even function
$$= 2\pi \left[8y - \frac{2}{3}y^{3} \right]_{0}^{2}$$

$$= 2\pi \left[\left(16 - \frac{16}{3} \right) - 0 \right]$$

$$= \frac{64}{\pi}$$

Volume is $\frac{64}{3}\pi$ units³.

20. (a) (i) $x^2 = 16 y$ Compare with $x^2 = 4 ay$ where a is focal length, $x^2 = 16 y \Rightarrow x^2 = 4(4) y$ i.e., a = 4. Focus is (0, 4).

(ii) Required area is shaded on diagram.S is the focus at (0, 4).

Area =
$$2\int_{0}^{4} x \, dy$$

= $2\int_{0}^{4} 4\sqrt{y} \, dy$
= $8\int_{0}^{4} y^{\frac{1}{2}} \, dy$

Area between curve and y axis. $x = \pm 4\sqrt{y}$ $x = 4\sqrt{y}$ This gives half the area,

$$= 8 \left[\frac{2}{3} y^{\frac{3}{2}} \right]_{0}^{4}$$

$$y^{\frac{3}{2}} = y \cdot y^{\frac{1}{2}} = y \sqrt{y}$$

$$= \frac{16}{3} \left[4\sqrt{4} - 0 \right]$$

$$= \frac{16}{3} (8)$$

$$= \frac{128}{3}.$$
Area is $\frac{128}{3}$ units².

i.e. $x = 4\sqrt{y}$.

Alternatively, area could be found by finding area under $x^2 = 16 y$ and subtracting it from area under y = 4.

 $A = \pi \int_{-8}^{8} y \, dx$ $= \frac{1}{16} \int_{-8}^{8} x^2 \, dx$ $= 2 \times \frac{1}{16} \int_{0}^{8} x^2 \, dx$ $= \frac{1}{8} \left[\frac{1}{3} x^3 \right]_{0}^{8}$

$$= \frac{1}{8} \cdot \frac{1}{3} [8^3 - 0]$$
$$= \frac{64}{3}.$$

Now area under y = 4 is a rectangle, length 16, width 4:

$$A = 4 \times 16 = 64$$

Area required $= 64 - \frac{64}{3}$ $= \frac{128}{2} \text{ units}^{2}.$

$$V = \pi \int_0^4 y^2 dx$$

$$= \pi \int_0^4 \frac{x^4}{256} dx$$

$$= \frac{\pi}{256} \int_0^4 x^4 dx$$

$$= \frac{\pi}{256} \left[\frac{1}{5} x^5 \right]_0^4$$

$$= \frac{\pi}{256} \left[\frac{1}{5} (4)^5 - 0 \right]$$

$$= \frac{\pi}{256} \cdot \frac{1}{5} \cdot 1024$$

$$= \frac{4\pi}{5}.$$

Volume is $\frac{4\pi}{5}$ units³.

Since y = g(x) is an odd function, $A_2 = -A_1$, therefore

$$\pi \int_{-2}^{2} g(x) dx$$
= $A_2 + A_1$
= $-A_1 + A_1$
= 0
i.e. $\pi \int_{-2}^{2} g(x) dx = 0$

OR (alternate solution), since y = g(x) is odd, then

$$\int_{-2}^{0} g(x) dx = -\int_{0}^{-2} g(x) dx$$
i.e.
$$\int_{-2}^{2} g(x) dx$$

$$= \int_{-2}^{0} g(x) dx + \int_{0}^{2} g(x) dx$$

$$= 0.$$

(b)

$$A_1 = \int_0^2 g(x) \, dx$$

$$A_2 = \left| \int_{-2}^0 g(x) \, dx \right|$$

Note Absolute value since area is under the x axis.

but
$$A_1 = |A_2|$$

$$\therefore A = 2 \int_0^2 g(x) dx$$
but $\int_0^2 g(x) dx = \text{area of}$
the quadrant of a circle with radius 2
$$= \frac{1}{4} \pi r^2$$

$$= \frac{1}{4} \times \pi \times 2^2$$

Therefore, required area

$$= 2 \times \int_{0}^{2} g(x) dx$$

$$= 2 \times \pi$$

$$= 2\pi \text{ unit}^{2}.$$

22. (a) y = h(x) y = h(x) y = h(x) y = h(x)

Note The area of the two semicircles cancel out, as one is positive and the other negative, and they have same size.

$$\therefore \int_{-3}^{5} h(x) dx = \text{area of triangle only}$$

$$= \frac{1}{2} \times 4 \times 2$$

$$= 4.$$

Note With definite a integral we add the various areas of different sections together, regardless of sign.

(b) Area between the curve y = h(x) and the x axis $= 4 + 2 \times \text{area of a semi-circle with radius 1 unit}$ where 4 is the area of Δ ,

i.e.
$$\int_{-3}^{1} h(x) dx$$

$$= 4 + 2 \times \frac{1}{2} \pi r^{2}$$

$$= 4 + \pi r^{2}$$

$$= 4 + \pi \times 1^{2} \quad [radius = 1]$$

$$= 4 + \pi.$$

Therefore, area between y = h(x) and the x axis is $(4+\pi)$ unit².

Remember For area we need a positive quantity. $\int_{1}^{5} h(x) dx$ $= \left| \int_{1}^{3} h(x) dx \right| + \int_{3}^{4} h(x) dx$

23. (a)
$$\int_{-3}^{3} \phi(x) dx$$

= $2 \times \int_{0}^{3} \phi(x) dx$ for even f_{-2}^{2} .
= $2 \times 8.5 = 17 \text{ sq. units}$.