C.E.M.TUITION

FINAL TRIAL HSC EXAMINATION 1996

MATHEMATICS

2/3 UNIT COMMON PAPER

Total time allowed - Three hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- Attempt ALL questions.
- All questions are of equal value.
- All necessary working should be shown in every question.
- Full marks may not be awarded for badly arranged work.
- Standard integrals are on the inside cover.
- Approved silent calculators may be used.
- You must hand in a blank page if a question is unanswered.

STANDARD INTEGRALS

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{(a^2 - x^2)}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{(x^2 - a^2)}} dx = \ln \left\{ x + \sqrt{(x^2 - a^2)} \right\}, |x| > |a|$$

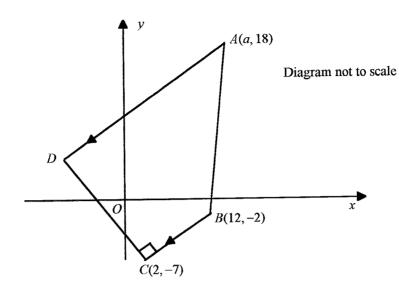
$$\int \frac{1}{\sqrt{(x^2 + a^2)}} \, dx = \ln \left\{ x + \sqrt{(x^2 + a^2)} \, \right\}$$

NOTE: $\ln x = \log_e x$; x > 0

Question 1:	Marks
(a) Find the value of $3^{1.5} \times \sqrt{32+9.6}$ to 3 significant figures.	2
(b) A mansion at Point Piper was recently sold for \$11.5 million which represent 75% more than its original price in 1993. What was the original price in 1993?	2
(c) Solve $ 3x-1 = 8$	2
(d) If $\frac{2x-y}{x+y} = 3$, find the value of $\frac{2x-y}{x-y}$	3
(e) Evaluate $(\cos 30^{\circ} - \tan 45^{\circ})(\sin 60^{\circ} + \tan 45^{\circ})$ without the use of	3
your calculator.	

Question 2:

Marks



The diagram shows a trapezium in which AD||BC and $\angle ADC = \angle BCD = 90^{\circ}$.

The points A, B and C are (a, 18), (12, -2) and (2, -7) respectively.

(a) Copy the diagram in your booklet

1

Given that AB = 2BC,

(b) show that the value of a is 22

2

Find:

(c) the equation of AD

2

(d) the equation of CD

2

(e) the coordinates of D

2

(f) the area of trapezium ABCD.

Question 3: Marks

(a) Differentiate:

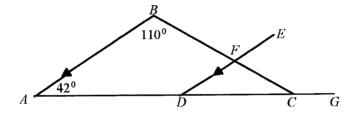
5

(i)
$$\frac{3}{x^4}$$

(ii)
$$x\sqrt{x+1}$$

(iii)
$$\frac{e^{2x}}{1-x}$$

(b)



In the diagram above, AB||DE|, $\angle BAC = 42^{\circ}$ and $\angle ABC = 110^{\circ}$.

4

- (i) Copy the diagram into your writing booklet.
- (ii) Find $\angle BFD$ and $\angle FCG$ giving reasons.
- (c) Andrew, Brian and Cathy play a game of cards.
 The probability that each of them will win a particular game are ½, ½ and ½ respectively. If they play three games in succession, use a tree diagram or otherwise, determine the probability that:
 - (i) Brian will win all three games.
 - (ii) Brian wins more games than Andrew or Cathy.

Question 4:

(a) A function is defined by:

$$f(x) \begin{cases} = 1 - x & \text{for } -2 \le x < 0 \\ = x + 1 & \text{for } 0 \le x \le 2 \end{cases}$$

(i) Write down the values of $f(\frac{1}{2})$ and $f(-\frac{1}{2})$

2

- (ii) Show that f(-x) = f(x) and state whether this function is odd, even or neither.
- (iii) By first graphing the above function, write down a single expression 2 for f(x).
- (b) If $\frac{dy}{dx} = e^{2x-1}$, find the equation of the curve that passes through $(\frac{1}{2}, 1)$.
- (c) Find the range values of x for which $x^2 > \frac{9x+5}{2}$
- (d) Given that $3x^2 11x + 3 \equiv A(x-2)(x-1) + B(x-1) + C$ for all values of x, find the values of A, B and C.

Question 5: Marks

(a) Evaluate:

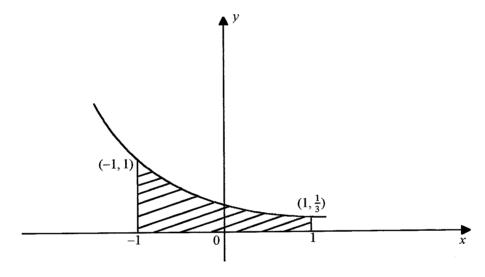
(i)
$$\int_{1}^{5} \frac{1}{\sqrt{3x+1}} dx$$

3

(ii)
$$\int_0^{\frac{\pi}{3}} (\sin x - \cos 3x) dx$$

3

(b)



The diagram shows part of the curve $y = \frac{1}{x+2}$. Calculate:

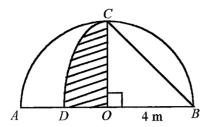
(a) the area of the shaded region,

3

(b) the volume obtained when this region is rotated through 360° about the x-axis.

Question 6: Marks

(a)



The diagram shows a semi-circle ABC, with centre O and radius 4 m, such that $\angle BOC = 90^{\circ}$. Given that CD is an arc of circle, centre B, calculate:

(i) the length of the arc CD.

3

(ii) the area of the shaded region.

2

(b) Sketch the graph of a function y = f(x), which satisfy the following conditions:

4

$$f(-5) = 2$$

$$f(-2) = -4$$

$$f(0) = 0$$

$$f(1) = 2$$

$$f(2) = 0$$

$$f(2) = 0$$

$$f(x) < 0 \text{ for } x < -5$$

$$f'(x) < 0 \text{ for } -5 < x < -2$$

$$f'(x) = 0 \text{ for } x = -2$$

$$f'(x) > 0 \text{ for } -2 < x < 1$$

$$f'(x) = 0 \text{ for } x = 1$$

$$f'(x) < 0 \text{ for } x > 1$$

(c) Find the equation of the tangent and normal to the curve

$$y = \frac{1}{1-x}$$
 at the point (0, 1).

Question 7 :	Marks
(a) If α and 2 are the roots of the quadratic equation	3
$2x^2 - kx + 2 = 0$	
Find the value of k and the other root α .	
(b) The population of a town over t years is given by the formula	2
$P = P_0 e^{0.0124t}$ where P_0 is its initial population	
How long will it take to triple its initial population (to the nearest year).	
(c) Consider the curve given by $y = 3x^4 - 4x^3 - 12x^2$	7

- (i) Find the coordinates of the three stationary points.
- (ii) Determine the nature of the stationary points.
- (iii) Find all values of x for which $\frac{d^2y}{dx^2} = 0$
- (iv) Sketch the curve for the domain $-2 \le x \le 3$.

Question 8:	Marks
(a) A 62 m length of rope is cut into pieces whose lengths are in arithmetic progression with a common difference of d metres. Given that the lengths of the shortest and longest pieces are 0.5 m and 3.5 m respectively, find the number of pieces and the value of d.	3
(b) A sum of P is borrowed at P per month compound interest. If the money is paid back with monthly instalments of M over P years,	
(i) show that after the first month, the amount owing is	2
$(PR-M)$ dollars where $R=1+\frac{r}{100}$	
(ii) show that after the <i>second</i> month, the amount owing is	2
$PR^2 - M(R+1)$	
(iii) deduce the formula for the amount owing after the first year	1
(iv) deduce the formula for the amount owing after n years.	1
(v) find the monthly instalments on a sum of \$15 000 borrowed over 5 years at 12% p.a. compound interest.	3

8

Question 9:

A particle P moves along a horizontal straight line so that its displacement, x m from a fixed point O, t seconds after motion has begun, is given by

$$x = 28 + 4t - 5t^2 - t^3.$$

- (a) Obtain expressions, in terms of t, for the velocity and acceleration of P, and
- (b) state the initial velocity and the initial acceleration of P.

A second particle Q moves along the same horizontal straight line as P and starts from O at the same instant that P begins to move. The initial velocity of P is 2 ms⁻¹ and its acceleration, a ms⁻², t seconds after motion has begun, is given by

$$a = 2 - 6t$$
.

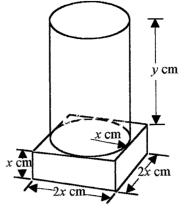
Find:

- (c) the value of t at the instant when P and Q collide and
- (d) determine whether or not P and Q are travelling in the same direction.

3

Question 10: Marks

The diagram shows a solid body which consists of a right circular cylinder fixed, with no overlap, to a rectangular block. The block has a square base of side 2x cm and a height of x cm. The cylinder has a radius of x cm and a height of y cm.



(a) Given that the total volume of the solid is 27 cm^3 , express y in terms of x.

(b) Hence show that the total surface area, $A ext{ cm}^2$, of the solid is given by

$$A = \frac{54}{x} + 8x^2$$

Find: (i) the value of x for which A has a stationary value,

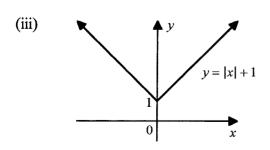
- (ii) the value of A and of y corresponding to this value of x.
- (c) Determine whether the stationary value of A is a maximum or minimum.

End of Paper

- (1)(a) 33.5 (to 3 s.f.)
- (b) \$6.6 million (1 d.p.)
- (c) $x = 3 \text{ or } -\frac{7}{3}$
- (d) $\frac{9}{5}$
- (e) $-\frac{1}{4}$
- (2) (a) Diagram
- (b) Proof
- (c) x-2y+14=0
- (d) 2x+y+3=0
- (e) D(-4,5)
- (f) 270 units²
- $(3)(a)(i) \frac{12}{r^5}$
- (ii) $\sqrt{x+1} + \frac{x}{2\sqrt{x+1}}$
- (iii) $\frac{e^{2x}(3-2x)}{(1-x)^2}$
- (b) (i) Diagram
- (ii) $\angle BFD = 70^{\circ}$ (Cointerior angles AB|DE)

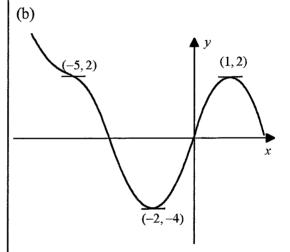
 $\angle FCG = 152^{\circ}$ (Ext. angle of $\triangle ABC$)

- (c) (i) $\frac{1}{27}$ (ii) $\frac{7}{27}$
- (4) (a) (i) $1\frac{1}{2}$, $1\frac{1}{2}$ (ii) Proof, Even fn.



(b)
$$y = \frac{e^{2x-1}+1}{2}$$

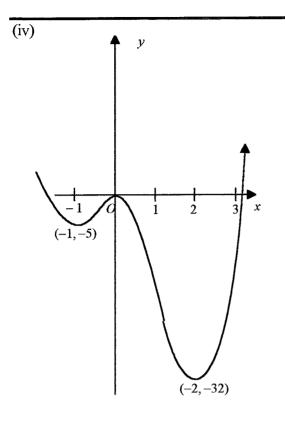
- (c) $x < -\frac{1}{2}$ or x > 5
- (d) A = 3, B = -2, C = -5
- (5) (a) (i) $\frac{4}{3}$ (ii) $\frac{1}{2}$
- (b) (i) $\ln 3 \text{ units}^2$ (ii) $\frac{2\pi}{3} \text{ units}^3$
- (6)(a)(i) $\sqrt{2} \pi \approx 4.44 \text{ cm } (2 \text{ d.p.})$
- (ii) $4(\pi 2)$ cm²



(c) $m_T = 1$, tangent: x - y + 1 = 0

normal : x + y - 1 = 0

- (7) (a) $k = 5, \alpha = \frac{1}{2}$
- (b) 89 years
- (c) (i), (ii) (-1,-5) min. t.p. (0,0) max. t.p. (2,-32) min. t.p.
- (iii) Pt. of inflexion at $x = \frac{1 \pm \sqrt{7}}{3}$



(8)(a)(i)
$$n = 31, d = \frac{1}{10}$$

(b)(i) At the end of first month

Int.=
$$\frac{r}{100} \times P$$

$$A_1 = P + \frac{Pr}{100} - M = P\left(1 + \frac{r}{100}\right) - M$$

=PR-M as required.

(ii) At the end of second month Interest = $\frac{r}{100} \times A_1$

$$A_2 = A_1 + \frac{A_1 r}{100} - M = A_1 \left(1 + \frac{r}{100} \right) - M$$

$$=(PR-M)R-M=PR^2-MR-M$$

 $=PR^2-M(R+1)$ as required.

(iii)
$$A_{12} = PR^{12} - M(1 + R + ... + R^{11})$$

(iv)
$$A_{12n} = PR^{12n} - M(1 + R + ... + R^{12n-1})$$

$$(v) M = $333.67$$

(9)(a)
$$v = 4 - 10t - 3t^2$$
; $a = -10 - 6t$

(b)
$$v = 4 \text{ m/s}$$
; $a = -10 \text{ m/s}^2$

(c) Hint: Equate
$$x_P = x_Q$$

At
$$t = \frac{3}{2}$$
 s, $v_P < 0$ and $v_Q < 0$,

particle is travelling in the same direction.

(10) (a)
$$y = \frac{27 - 4x^3}{\pi x^2}$$

(b)(i)
$$x = \frac{3}{2}$$

(ii)
$$A = 54 \text{ cm}^2$$
, $y = 1.91 \text{ cm}$

(c) minimum value.