C.E.M.TUITION

Name	<u>. •</u>		
T ASSESSED	· •		

Review Topic: Coordinate Geometry

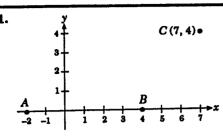
(HSC - PAPER 1)

Year 12 - Mathematics

PHONE: 9666-3331

FAX: 9316-4996

MOBILE: 0412 880 475

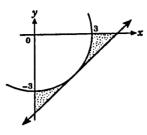


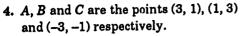
A, B, C and D have coordinates (-2, 0), (4, 0), (7, 4) and (1, 4) respectively.

- (a) Draw this diagram and label the point D.Draw the lines BC and CD.
- (b) If $\angle BAD = \alpha^{\circ}$, show that $\tan \alpha = \frac{4}{3}$.
- (c) Prove that $\angle ABC = (180 \alpha)^{\circ}$. Why is $AD \parallel BC$?
- (d) (i) Find the equation of the line AC and the midpoint of the interval BD.
 - (ii) Show that AC bisects BD. Why is this an expected result?
- (e) Calculate the area of figure ABCD and hence write down the area of $\triangle ACD$.

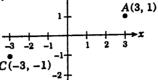
- 2. A, B and C are the points (2, 2), (4, 8) and (-2, 5) respectively. Plot these points on your number plane.
 - (a) Find: (i) distance between B and C;
 - (ii) equation of the line containing B and C;
 - (iii) equation of the line perpendicular to BC passing through A;
 - (iv) the perpendicular distance from A to BC;
 - (v) the midpoint, L, of AB.
 - (b) Calculate the area of $\triangle ABC$.
 - (c) Derive the equation of the median, CL, of the $\triangle ABC$.

- 3. (a) Prove that the line 3x-4y=15 is a tangent to the circle $x^2+y^2=9$.
 - (b) Derive the equation of the line perpendicular to the tangent at the point of contact.
 - (c) Calculate the area in the fourth quadrant between the tangent and the circle (shaded on diagram).



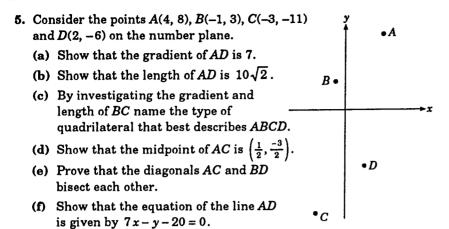


- (a) Show that the length of BC is $4\sqrt{2}$ units.
- (b) Show that the midpoint of AC is (0, 0).
- (c) Derive the equation of the line BC.
- (d) Show that the equation, ℓ , of the line through A parallel to BC has equation x-y-2=0.

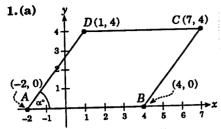


•B (1, 3)

- (e) (i) From the diagram plot the point D, the fourth vertex of parallelogram ABCD (with diagonal AC). Write down the coordinates of D.
 - (ii) Show that D lies on ℓ .
- (f) Find the area of parallelogram ABCD.
- (g) Prove that the diagonals AC and BD bisect each other.



(g) By first calculating the perpendicular distance of the point B from the line AD, find the area of ABCD.



(b) Gradient
$$AD = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{4 - 0}{1 - (-2)} = \frac{4}{3}$$

Now $m = \tan \alpha$, $\therefore \tan \alpha = \frac{4}{3}$

(c) Gradient
$$BC = \frac{4-0}{7-4} = \frac{4}{3}$$
.

Then $\tan C\hat{B}X = \frac{4}{3}$, i.e. $C\hat{B}X = \alpha^{\circ}$

Then $\hat{ABC} = (180 - \alpha)^{\circ}$ (angle sum of st. line)

Also, $AD \parallel BC$ as lines have the same gradient.

Alternatively, first state $AD\parallel BC$ because of gradients, and then follow with:

$$\therefore A\hat{B}C = \alpha^{\circ}(\text{corr.} \angle s, AD \parallel BC)$$

(d) (i) Equation of AC is of form:

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$$

$$\therefore \frac{y-4}{x-7} = \frac{0-4}{-2-7} = \frac{4}{9}$$

$$\therefore 9y-36=4x-28$$

i.e.
$$4x-9y+8=0$$
.

Midpoint BD

$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$= \left(\frac{4 + 1}{2}, \frac{0 + 4}{2}\right) = \left(\frac{5}{2}, 2\right).$$
Midpoint BD is $\left(\frac{5}{2}, 2\right)$.

(ii) AC bisects BD if AC passes through midpoint of BD or if midpoint of BD lies on AC. Subst. midpoint into 4x-9y+8=0.

:. LHS =
$$4\left(\frac{5}{2}\right) - 9(2) + 8$$

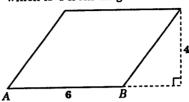
= $10 - 18 + 8 = 0$.

Then midpoint satisfies eqn., i.e. AC bisects BD.

This is expected, as ABCD is a parallelogram (both pairs of opposite sides parallel, AB | DC is obvious);

diagonals of a parallelogram bisect each other.

(e) We need length of AB, which is 6 units from diagram, and height which is 4 from diagram.



Area = $b \times h$ $= 6 \times 4 = 24$.

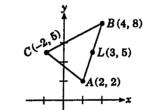
Area is 24 units².

Area $\triangle ACD = \frac{1}{2} \times 24$

= 12 units^2 .

(Diagonals cut parallelogram into two equal triangles.)

2.



(a) (i) Distance BC

$$= \sqrt{(4-2)^2 + (8-5)^2}$$

$$= \sqrt{45}$$

$$= 3\sqrt{5} \text{ units.}$$

(ii) Equation of BC is of form:

$$\frac{y-y_1}{x-x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$
i.e.
$$\frac{y-5}{x+2} = \frac{8-5}{4+2}$$

$$= \frac{3}{6}$$

$$= \frac{1}{2}, *$$

$$\begin{array}{ccc} \therefore & 2(y-5) \\ & = 1(x+2) \end{array}$$

i.e.
$$2y - 10 = x + 2$$

 $x - 2y + 12 = 0$ is equ

$$\therefore x-2y+12=0 \text{ is eqn.}$$

(iii) $m_{BC} = \frac{1}{2} \text{ (from *)},$

.. gradient perpendicular = -2.

$$m_1 \times m_2 = -1$$

Eqn. is of form:

$$y - y_1 = m(x - x_1)$$
 (2, 2)

$$y-2=-2(x-2)$$

$$=-2x+4,$$

$$\therefore 2x+y-6=0.$$

(iv)
$$p = \begin{vmatrix} Ax_1 + By_1 + C \\ \sqrt{A^2 + B^2} \end{vmatrix}$$

 $A = 1$ $x_1 = 2$ $C = 12$ $y_1 = 2$
 $= \frac{1(2) + (-2)(2) + 12}{\sqrt{1^2 + (-2)^2}}$
 $= \frac{2 - 4 + 12}{\sqrt{5}}$
 $= \frac{10}{\sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5}$.

Perp. distance is $2\sqrt{5}$ units.

(v)
$$L = \left(\frac{2+4}{2}, \frac{2+8}{2}\right)$$

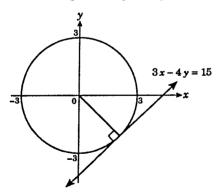
= (3, 5).

(b) Area

=
$$\frac{1}{2} \times BC \times \text{perp. distance}$$

= $\frac{1}{2} \times 3\sqrt{5} \times 2\sqrt{5}$
= 15 units².

- (c) By observation, equation of CL is y = 5 (check diagram).
- 3. (a) Circle has centre (0, 0),
 radius = 3 units. Radius
 drawn to point of contact of
 tangent is right angle.



If perpendicular distance from (0, 0) to 3x-4y=15is 3 units, then 3x-4y=15 is a tangent.

$$p = \begin{vmatrix} Ax_1 + By_1 + C \\ \hline \sqrt{A^2 + B^2} \end{vmatrix}$$

$$A = 3 & x_1 = 0 \\ B = -4 & y_1 = 0$$

$$C = -15 & y_1 = 0$$

$$= \begin{vmatrix} 0 + 0 - 15 \\ \hline 0 + 16 \end{vmatrix}$$

$$= \left| \frac{1}{\sqrt{9+16}} \right|$$

$$= \left| \frac{-15}{\sqrt{25}} \right|$$

$$= \left| \frac{-15}{5} \right| = 3 \text{ (= radius)}.$$

 \therefore 3x-4y=15 is tangent to circle.

(b)
$$3x-4y=15$$

 $\therefore 4y=3x-15$

$$y=\frac{3}{4}x-\frac{15}{4}$$

$$\therefore m = \frac{3}{4}$$

Perpendicular gradient

$$=\frac{-4}{3} \qquad \boxed{m_1 m_2 = -1}$$

Eqn. of perpendicular is of form:

$$y - 0 = \frac{-4}{3}(x - 0)$$

$$\therefore \quad 3y = -4x,$$

i.e. 4x + 3y = 0 is required equation.

(c) Shaded A

= area of
$$\Delta$$
 - area of $\frac{1}{4}$ circle
= $\left(\frac{1}{2} \times 5 \times \frac{15}{4}\right) - \frac{1}{4}\pi(3)^2$
= $\frac{3}{8}[25 - 6\pi]$ units².

Note Line 3x-4y=15cuts x axis at 5(y=0) and y axis at $\frac{-15}{4}(x=0)$.

(a)
$$BC = \sqrt{(1-3)^2 + (3-1)^2}$$

= $\sqrt{32}$
= $4\sqrt{2}$ units.

(b) Midpoint of AC

$$= \left(\frac{3+-3}{2}, \frac{1+-1}{2}\right)$$
$$= (0, 0).$$

(c) Equation of BC has form:

$$\frac{y-3}{x-1} = \frac{-1-3}{-3-1} = \frac{-4}{-4} = 1 *$$

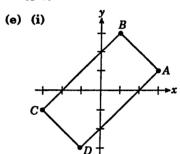
$$\therefore y-3 = x-1$$
i.e. $x-y+2=0$.

(d) Line parallel to BC has same gradient, i.e. m = 1 *.

Eqn. is of form:

$$y-1=1(x-3)$$
 [A(3,1)]
 $y-1=x-3$,
i.e. $x-y-2=0$ is equation

i.e. x-y-2=0 is equation of ℓ .



From diagram, coords. of D are (-1, -3).

(ii) Substitute (-1, -3) into x-y-2=0.

$$LHS = -1 + 3 - 2$$

= 0 = RHS.

$$D(-1, -3)$$
 lies on ℓ .

(f) Gradient
$$AB = \frac{3-1}{1-3}$$

= $\frac{2}{2} = -1$.

Hence $AB \perp BC$ (1×-1=-1), \therefore figure ABCD is a rectangle.

Area =
$$L \times W$$

= $BC \times AB$
= $4\sqrt{2} \times 2\sqrt{2}$
= 16 units².

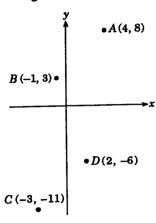
$$AB = \sqrt{(3-1)^2 + (1-3)^2}$$
$$= \sqrt{4+4} = \sqrt{8}$$
$$= 2\sqrt{2}.$$

(g) Midpoint AC = (0, 0) from (b). Midpoint BD

$$= \left(\frac{1+-1}{2}, \frac{3+-3}{2}\right)$$
$$= (0, 0).$$

Diagonals AC and BD both have midpoints at (0, 0),
∴ diagonals bisect each other.

5.



(a)
$$m_{AD} = \frac{8 - (-6)}{4 - 2} = \frac{14}{2} = 7.$$

(b)
$$AD = \sqrt{(4-2)^2 + (8+6)^2}$$

= $\sqrt{4+196} = \sqrt{200}$
= $10\sqrt{2}$.

(c)
$$m_{BC} = \frac{3 - (-11)}{-1 - (-3)} = \frac{14}{2}$$

= $7 = m_{AD}$.
 $BC = \sqrt{(-1+3)^2 + (3+11)^2}$
= $\sqrt{200} = 10\sqrt{2} = AD$.

ABCD is a parallelogram as one pair of opposite sides is both parallel and equal.

(d)
$$MP_{AC} = \left(\frac{4-3}{2}, \frac{8-11}{2}\right)$$

= $\left(\frac{1}{2}, \frac{-3}{2}\right)$.

(e)
$$MP_{BD} = \left(\frac{-1+2}{2}, \frac{3-6}{2}\right)$$

= $\left(\frac{1}{2}, \frac{-3}{2}\right)$.

As midpoints of both diagonals are the same, the diagonals bisect each other.

(f) Eqn. of AD is of form: y-8=7(x-4) =7x-28, $\therefore 7x-y-20=0$ is eqn. of

$$(g) p = \left| \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right|$$

$$A = 7$$

$$B = -1$$

$$C = -20$$

$$y_1 = 3$$

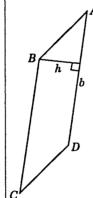
$$= \left| \frac{7(-1) + (-1)(3) - 20}{\sqrt{7^2 + (-1)^2}} \right|$$

$$= \left| \frac{-7 - 3 - 20}{\sqrt{50}} \right|$$

$$= \frac{30}{\sqrt{50}} = \frac{3\sqrt{50}}{5}$$

$$= \frac{3.5\sqrt{2}}{5} = 3\sqrt{2}.$$

$$\boxed{\frac{30}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}} = \frac{3\sqrt{50}}{5} = \frac{3}{5}\sqrt{50}}$$



Area of parallelogram = base × height = AD × perp. ht. = $10\sqrt{2} \times 3\sqrt{2}$ = 60. Area is 60 units²