$\mathbb{C}.\mathbb{E}.\mathbb{M}.\mathbb{TUITION}$

Student Name	•				

Review Topic: Real Functions

(Preliminary Course - Paper 1)

Year 11 - 2 Unit 1996

Question 1

- (a) Illustrate on the real number line the set of x such that : |x-1| + |x+1| > 2
- (b) State the natural (i.e. the largest possible) domain of the function given by :

$$y = \sqrt{1+x} - \sqrt{1-x} .$$

Question 2

(a) A function is defined by the rule:

$$f(x) = \begin{cases} 0 \text{ if } x \le -2\\ -1 \text{ if } -2 < x < 0\\ x \text{ if } x \ge 0 \end{cases}$$

Find (i)
$$f(-2) + f(-1) + f(0)$$
 (ii) $f(a^2)$

(b) State (i) the natural (largest possible) domain; and (ii) the range of the function for which

$$f(x) = \sqrt{1 - x^2}$$
 and sketch the graph.

- Question 3 (a) If $f(x) = ax^2 + bx + c$ find the value of f(x) f(-x).
- (b) Sketch, using the same axes, but not on graph paper, $y = x^2 2x + 3$ and xy = -1

(a) 2*bx*

Question 4 Draw separate sketches (showing the main features - not on graph paper) of: (a) $x^2 + y^2 = 36$ (b) $y = x^2 + 4$ (c) $y = 2^x$

(a)
$$x^2 + y^2 = 36$$

(b)
$$y = x^2 + 4$$

(c)
$$y = 2^x$$

Question 5 Draw separate sketches (showing the main features - not on graph paper) of: (a) xy = 1 (b) y = |x| (c) $y = x^2 - 4$

(a)
$$xy = 1$$

(b)
$$y = |x|$$

(c)
$$v = x^2 - 4$$

Question 6 The parabola $y = ax^2 - b$ and the circle $x^2 + y^2 = 16$ meet on both the x and y axes. If a and c are both positive, what are their values?