C.E.M.TUITION

Student Name:

Review Topic: Parabola $x^2 = 4ay$

(Preliminary - Paper 1)

Year 12 - 3 Unit

 $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$. SN is perpendicular to the normal at P, where S is the focus of the parabola.

(a) Show that the equation of the normal at P is

$$x + py = 2ap + ap^3$$

- (c) Find the co-ordinates (X, Y) of the point N.
- (d) Show that the locus of N is the parabola $x^2 = a(y-a)$.

- 2. Two perpendicular lines x = my and y = -mx are drawn through the origin O to meet the parabola $x^2 = 4ay$ in the points A and B.
 - (a) Find the co-ordinates of the points A and B.
 - (b) Show that the tangents at the points A and B intersect on the line y = -4a.

3.

Two perpendicular chords through the focus S(0, a) of the parabola $x^2 = 4ay$ meet the directrix in R and M respectively. $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola such that the tangents at P and Q are parallel to the two chords.

(a) Write down the equations of the tangents at P and Q.

(b) Show that the equations of the focal chords RS and MS are y - a = px and y = qx + a respectively.

(c) Hence, show that pq = -1.

(d) Show that the coordinates of T is (a(p+q), -a).

(e) Show that T is also the midpoint of MR.

- Using the given diagram: $S(0, a), P(2ap, ap^2)$
 - (a) The normal at P is $x + py = 2ap + ap^3$ (Theory)
 - (b) SN \perp the normal. Gradient of SN is p. The equation of SN is $y-\alpha=px$

$$y = px + a$$
(c) Solve
$$y = px + a \qquad \dots (1)$$
and
$$x + py = 2ap + ap^3 \quad \dots (2)$$
to find N(X, Y).
Put $y = px + a$ into (2)

$$x + p(px + a)$$

$$= 2ap + ap^{3}$$

$$x(1+p^{2}) = ap(1+p^{2})$$

$$x = ap$$

Then
$$y = px + a$$

= $a(1+p^2)$

$$\therefore$$
 N is $(ap, a(1+p^2))$

(d) To find the locus of N, eliminate the parameter p. X = ap, $Y = a + ap^2$ $\therefore X^2 = a^2p^2 = a \cdot ap^2$ But $ap^2 = Y - a$ $\therefore X^2 = a(Y - a)$ Hence the locus of N is a parabola $x^2 = a(y - a)$, vertex (0, a), focal

2.

Solve x = my and $x^2 = 4ay$ to find the coordinates of A $m^2y^2 = 4ay$

$$m^2 y^2 = 4ay$$
$$y(m^2 y - 4a) = 0$$

At A,
$$y \neq 0$$
, $y = \frac{4a}{m^2}$

$$x = m \cdot \frac{4a}{m^2} = \frac{4a}{m}$$
A is $\left(\frac{4a}{m}, \frac{4a}{m^2}\right)$

Solve y = -mx and $x^2 = 4ay$ to find the coordinates of B.

B is
$$\left(-4am, 4am^2\right)$$

(b) From
$$x^2 = 4ay$$
, $y = \frac{x^2}{4a}$

$$\frac{dy}{dx} = \frac{x}{2a}$$

 m_1 = gradient of the tangent at A

$$m_1 = \frac{4a}{m} \cdot \frac{1}{2a} = \frac{2}{m}$$

 m_2 = gradient of the tangent at B

$$m_2 = -4am \cdot \frac{1}{2a} = -2m$$

The tangents at A and B are: respectively:

$$y - \frac{4a}{m^2} = \frac{2}{m} \left(x - \frac{4a}{m} \right)$$

and

$$y - 4am^2 = -2m(x + 4am)$$

i.e.
$$m^2 y = 2mx - 4a$$
 ... (1) and

$$y = -2mx - 4am^2 \dots (2)$$

Adding

$$y(1+m^2) = -4a(1+m^2)$$
$$y = -4a$$

Hence the tangent at A and B intersect on the line y = -4a. [Students note that it is not necessary to find the x-coordinate.]

3. (a)
$$y = px - ap^2$$
 ... (1) $y = qx - aq^2$... (2)

- (b) The gradient of line (1) is m = p. The focal chord parallel to (1) is y a = px or y = px + a. Similarly the other focal chord is y = qx + a.
- (c) The chords are perpendicular to each other. Using $m_1m_2=-1$, with $m_1=p, m_2=q$, we have pq=-1.
- (d) Solving (1) and (2): Subtract (1)-(2), then: $0 = x(p-q)-a(p^2-q^2)$ $p \neq q$, divide by p-q. x = a(p+q)Then $y = p(ap+aq)-ap^2$ = apq \therefore T is (ap+aq,apq)But pq = -1

 \therefore T is (ap + aq, -a)

(e) y = px + aAt R, y = -a, so $x = \frac{-2a}{p}$ \therefore R is $\left(\frac{-2a}{p}, -a\right)$ Similarly M is $\left(\frac{-2a}{q}, -a\right)$ The mid-point of RM is,

say N(X, Y), then:

$$X = \frac{1}{2} \left(-\frac{2a}{p} - \frac{2a}{q} \right)$$

$$= -a \left(\frac{1}{p} + \frac{1}{q} \right)$$

$$X = \frac{-a(p+q)}{pq}, pq = -1$$

$$X = a(p+q)$$

$$Y = \frac{1}{2} (-a-a) = -a$$

$$\therefore \text{ N is } (ap+aq, -a)$$
N and T have the same coordinates, hence T is

the mid - point of RM.