NAME:		

CENTRE OF EXCELLENCE IN

MATHS TUITION M P

YEAR 11 – MATHEMATICS

LESSON & TUTORIAL - 6 TOPIC: REGIONS & INEQUALITIES

Received on	Check corre	
Completed on		
Checked by		

Tutor's Initials

Dated on

6. Regions and inequalities:

6.1 Equations:

An equation or expression such as y = 2x + 5, represents a straight line.

Example:

Fill in the table of values and sketch the line y = 2x + 5

X	-1	0	1
y			

6.2 Inequations:

An inequation such as $y \le 2x + 5$ represents all points on a half-plane either above or below the line y = 2x + 5. Test this with a well chosen point. Sketch this region on the previous example.

Example:

Sketch the region represented by

(1)
$$y < x + 1$$

(2)
$$y \le x^2$$

$$(3) x^2 + y^2 \le 4$$

$$(5) x \le \sqrt{1-y^2}$$

(6)
$$y \le x + 1 \cap x + y \le 1 \cap y \ge 0$$

$$(4) \ y < \sqrt{4 - x^2}$$

6.3 Locus:

Locus is the set of points that satisfies a set of rules and is in the form of an equation e.g. y = x + 1 or $y = x^2$.

These equations are sometimes referred to as "Cartesian equations".

Examples:

Sketch the locus of a point P(x, y) that :

(1) is always two units from the y-axis.

$$x^2 + y^2 = 1$$

(4) is always two units from the point (1,2).

(3) is always one unit from the origin.

$$x = \pm 2$$

(2) is always three units from the x-axis.

$$y = \pm 3$$

$$(x-1)^2 + (y-2)^2 = 4$$

(3) $y-x^2 > 0$

Exercises:

Sketch the regions given by these inequalities:

(1)
$$x + y \ge 2$$

$$y < 2x - 1$$

$$(4) \ x^2 + y^2 \le 9$$

 $(5) x^2 + y^2 > 1$

- (7) Sketch the locus of P(x, y) that is
 - (a) 2 units from the x-axis

(6) $y < \sqrt{9-x^2}$

(b) 3 units from the y-axis

(c) 2 units from the origin.

(e) 2 units from the line joining the points (-1,2) and (1,-2).

(d) 3 units from the point (-1,-1)

PAST EXAMINATION QUESTIONS HSC 2003

(3)

(c) Shade the region in the Cartesian plane for which the inequalities y < x-2, $y \ge 0$ and $x \ge 6$ hold simultaneously.

SBHS 2004 (Prelim)

(4) (g) Sketch the region in the number plane which satisfies both the inequalities

$$y \le \sqrt{16 - x^2} \text{ and } x - y \ge 4$$
.

C.E.M. – YEAR 11 – MATHS TUTORIAL EX. – REGIONS & INEQUALITIES 8

A.M.P 2001 (Prelim)

(6) (b) (i) Shade the region bounded by the inequations

$$y \ge 0$$
, $x + y < 1$ and $y < 4x + 6$

neatly on the same number plane.

SBHS 2000 (Prelim)

(3) (a) (i) Find the points of intersection of the line y = 4 - x and the circle $x^2 + y^2 = 16$.

(0,4) and (4,0)

(ii) Hence sketch the region where $y \ge 4 - x$ and $x^2 + y^2 < 16$ hold simultaneously.

A.R.C. 2000 (Prelim)

- (8) (b) The locus of point P(x, y) has equation $x^2 + y^2 6x + 2y + 6 = 0$.
 - (i) Describe its shape.
 - (ii) List all its features.

Circle with centre (3,-1) and radius 2 units.

2

NSWIS '99 (Prelim)

(4)

(c) The diagram below shows the graphs 3x - 2y + 6 = 0 and x + 2y - 10 = 0.

State the pair of inequalities which define the shaded region.

C.E.M. – YEAR 11 – MATHS TUTORIAL EX. – REGIONS & INEQUALITIES 10

NSWIS '98 (Prelim)

(4) (b) Sketch the region given by the following inequalities

3

$$x+y-2>0, y \le x^2, x \ge 0, y \ge 0.$$

NSWIS '97 (Prelim)

(1) (d) (i) Sketch the lines x-y-1=0 and 3x+y-6=0 on the same set of axes. 3

(ii) Shade on your sketch the region which is satisfied by the inequalities

$$x-y-1 \ge 0$$
, $3x+y-6 \le 0$ and $y \ge 0$.