NAME:			

CENTRE OF EXCELLENCE IN

MATHS TUITION

YEAR 11 - MATHEMATICS

LESSON & TUTORIAL - 2 TOPIC : INEQUALITIES & ABOSLUTE VALUES

Received on	Check corrections on pages:
Completed on	
Checked by	

Tutor's Initials

Dated on

2. INEQUALITIES AND ABSOLUTE VALUES:

2.1 Inequalities:

Explain in words the four inequality symbols and other associated symbols below:

- < means
- ≤ means
- > means
- ≥ means

 $\{x: x>0\}$ means the set of all x such that x is greater than 0.

Examples:

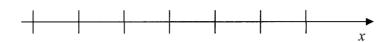
Represent each of the following sets on the number lines provided:

1. $\{x: x \ge 1\}$

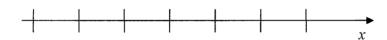
2. $\{x: x < -1\}$



3. $\{x: 1 \le x \le 4\}$



4. $\{x: -1 < x < 2\}$


6.
$$\{x: x \le 0\} \cup \{x: x \ge 2\}$$

7.
$$\{x: x < -1\} \cup \{x: x > 3\}$$

8.
$$\{x: x < 1\} \cap \{x: x \le -1\}$$

9.
$$\{x: x > 0\} \cap \{x: -1 \le x \le 2\}$$

10.
$$\{x: -3 < x < 3\} \cap \{x: -2 \le x \le 2\}$$

2.2 Absolute values:

The absolute value symbol is denoted by | |.

Therefore, |2| or |-2| means that the distance from O is exactly 2 units regardless of its position. |x| may also be defined by $\sqrt{x^2}$.

Examples:

Simplify the following:

(1)
$$|3| + |5| - |-4|$$

(2)
$$2|-3|\times|-5|$$

$$(3) \ \frac{|12| \times |-30|}{-4|15|}$$

$$(4) \ \frac{\left|-8\right|+3\left|-2\right|}{-2\left|3-10\right|}$$

(5)
$$\frac{4|x|+2|-y|}{|x-y|}$$
 if $x=5$ and $y=-3$

30

-6

-1

2.3 Equations involving absolute values:

If
$$|2| = |-2|$$
, then $|x| = 2 \Rightarrow x = 2$ or -2 .

Hence, in solving equations or inequations with absolute values, replace the $|\ |$ symbol with \pm signs.

Examples:

Solve the following for *x*:

(1)
$$|x| = 5$$

(2)
$$|x-1|=3$$

(3)
$$|2-x|=5$$

±5

(5) |x-1| = 2x+3 (Hint: check your answer by substitution).

Note: When solving equations with absolute values on both sides, consider:

(i) both positive results only and (ii) a positive result against a negative result only.

(6)
$$|3x-1| = |x+2|$$

$$\left[\frac{3}{2} \text{ or } -\frac{1}{4}\right]$$

(7)
$$|x-4| = |2x+1|$$

(8)
$$|3x-2|=|x+5|$$

$$1 \text{ or } -5$$

$$\left[\frac{7}{2} \text{ or } -\frac{3}{4}\right]$$

2.4 Inequations with and without absolute values:

2.4.1 Note the following results:

(i)
$$6 > 2$$
 but $-6 < -2$.

So, remember to switch the inequality sign when multiplying or dividing by a negative number.

(ii)
$$6 > 2$$
 but $\frac{1}{6} < \frac{1}{2}$.

So, remember to switch the inequality sign when taking reciprocals on both sides of the inequation.

Examples:

Solve the following inequations and graph your solution set on a number line:

(1)
$$x+3 < 6$$

(2)
$$2x-3 \ge 10$$

(3)
$$|x+3| \le 6$$

$$x \ge 6\frac{1}{2}$$

2.4.2 To solve inequations involving absolute values with x on both sides:

Take note that prior knowledge about sketching of graphs with absolute values is useful.

Examples:

(1) (a) Sketch the graphs of y = x + 2 and y = |2x + 1| on the same set of axes.

(b) Find the points of intersection of the two graphs by algebraic methods.

(1,3) or (-1,1)

(c) Hence solve $|2x+1| \le x+2$

(b) From the graphs or otherwise, find the points of intersection.

$$(4,5)$$
 or $\left(\frac{2}{3},1\frac{2}{3}\right)$

(c) Hence solve |2x-3| > x+1

HSC 05

(1)

Find the values of x for which $|x-3| \le 1$. (e)

2

 $2 \le x \le 4$

HSC 04

 $\overline{(1)}$

Find the values of x for which $|x+1| \le 5$. (f)

2

 $-6 \le x \le 4$

<u>HSC 03</u> (4) (a) Solve |x-3| = 7.

x = -4 or 10

HSC 2002

(4)

Solve $|x-1| \ge 3$ and graph your solution on the number line.

2

HSC 2001

Marks 2

(1) (b) Solve |x+3| < 2.

Graph your solution on a number line.

-5 < x < -1

HSC 2000

(1) (b) Solve $x+7 \ge 3$ and graph the solution on the number line.

2

Solve |x-5| = 3. (f)

2

x = 2 or 8

HSC '99 (1) (c) Solve $3-2x \ge 7$.

 $x \le -2$

HSC '98 (1) (b) Simplify |-5| - |8|

 $\overline{-3}$

HSC '97

(4)

- (i) Sketch the graph of $y = x^2 6$, and label all intercepts with the axes. (b)
- (ii) On the same set of axes, carefully sketch the graph of y = |x|.

(iii) Find the x coordinates of the two points where the graphs intersect.

x = -3 or 3

(iv) Hence solve the inequality $x^2 - 6 \le |x|$.

 $-3 \le x \le 3$

HSC '96
(1) (f) Sketch the solution of $|x+2| \le 3$ on a number line.

 $-5 \le x \le 1$; Number line

 $\frac{\text{HSC '95}}{(1) \text{ (f) Solve } 5-3x < 7.}$

HSC '94 (1) (d) Solve |x-1| = 4.

x = -3 or 5

HSC '93 (1) (f) Find the values of x which satisfy the inequality 5-3x<17.

|x>-4|

HSC '91

(1) (f) Mark on the number line the values of x for which $|x+1| \le 3$.