C.E.M.TUITION

Student Name :_____

Review Topic: Differentiation & Applications
(Paper 1)

Year 11 - 2 Unit

- 1. Sketch the graph of the function f(x) = |x|. Is the function differentiable at x = 0? Give a reason for your answer.
- 2. A curve has equation $y = 2x^3 + ax + b$. At the point P(1,1) on the curve, the tangent to the curve is parallel to the line y = x. Find the values of a and b.

- 3. P(1,-3) is a point on the curve $y = x^2 4$. The tangent to the curve at P meets the x-axis at A and the y-axis at B.
 - (i) Show that the tangent at P has equation 2x y 5 = 0.
 - (ii) Find the area of $\triangle AOB$.

- 4. P(1,0) is a point on the curve $y = 1 x^2$. The normal to the curve at P meets the curve again at Q.
 - (i) Show that the normal at P has equation x-2y-1=0.
 - (ii) Find the coordinates of Q.

5. If $y = \frac{x}{2x+1}$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

- 6. The cost C(v) dollars per hour of running a truck at an average speed of $v \text{ kmh}^{-1}$ is given by $C(v) = av + \frac{b}{v}$, for some constants a and b. At an average speed of 20 kmh^{-1} the cost is \$85 per hour, and at an average speed of 40 kmh^{-1} the cost is \$50 per hour.
 - (i) Show that $a = \frac{1}{4}$ and b = 1600.
 - (ii) Find the most economical average speed of running the truck.

- 7. Consider the function f(x) = (x 3)√x.
 (i) Sketch the graph of the function showing clearly the important features.
 - (ii) Find the domain and range of the function.

C

Page 6

- 8. The curve y = f(x) has gradient function $\frac{dy}{dx}$. The graph of $\frac{dy}{dx}$ as a function of x is shown in Figure 9.19. Find where the curve y = f(x)
 - (i) has a maximum turning point
 - (ii) is concave down.

Figure 9.19

1.

Figure 14.43

f is not differentiable at x = 0. The gradient of the tangent is -1 as x approaches 0 from the left, and +1 as x approaches 0 from the right. Hence there is no limiting tangent at x = 0 and the derivative is not defined. Note that the graph is not a smooth curve at x = 0 but has sharp corners.

2.
$$y = 2x^3 + ax + b$$

$$\frac{dy}{dx} = 6x^2 + a$$

$$\frac{dy}{dx} = 6 + a \quad \text{when } x = 1$$
At $P(1, 1)$ the tangent is parallel to the line $y = x$ and has gradient 1.

$$\therefore 6 + a = 1 \implies a = -5$$

$$P(1, 1) \text{ lies on the curve } \Rightarrow 1 = 2 + a + b$$

3. (i)
$$y = x^2 - 4 \Rightarrow \frac{dy}{dx} = 2x$$

When $x = 1$, $\frac{dy}{dx} = 2$

 $\therefore a = -5$ and b = 4.

Tangent at P(1, -3) has gradient 2 and equation

$$y+3=2(x-1)$$
$$y+3=2x-2$$
$$2x-y-5=0$$

(ii) At A,
$$y=0 \Rightarrow x=\frac{5}{2}$$

At B, $x=0 \Rightarrow y=-5$
Figure 14.44

Area $\triangle AOB = \frac{1}{2} \times 5 \times \frac{5}{2} = \frac{25}{4}$ sq. units.

4. (i)
$$y = 1 - x^2 \implies \frac{dy}{dx} = -2x$$

When $x = 1$, $\frac{dy}{dx} = -2$

Hence normal at P(1, 0) has gradient $\frac{1}{2}$ and equation $y-0=\frac{1}{2}(x-1)$ 2y=x-1x-2y-1=0

(ii) Q lies on both the normal at P and the curve. Hence at Q

$$2y = x - 1
2y = 2 - 2x^{2}$$
 \Rightarrow $x - 1 = 2 - 2x^{2}$

$$2x^{2} + x - 3 = 0$$

$$(2x + 3)(x - 1) = 0$$

$$x = -\frac{3}{2} \text{ or } x = 1$$

x = 1 gives the point P. Hence at Q $x = -\frac{3}{2} \text{ and } y = 1 - \left(-\frac{3}{2}\right)^2 = -\frac{5}{4}.$ Hence Q has coordinates $\left(-\frac{3}{2}, -\frac{5}{4}\right)$.

5.
$$y = \frac{x}{2x+1}$$

$$\frac{dy}{dx} = \frac{1 \cdot (2x+1) - x \cdot 2}{(2x+1)^2}$$

$$= \frac{1}{(2x+1)^2}$$

$$\frac{dy}{dx} = (2x+1)^{-2}$$

$$\frac{dx}{dx^{2}} = -2(2x+1)^{-3} \cdot 2$$

$$= \frac{-4}{(2x+1)^{3}}$$

6. (i)
$$C(v) = av + \frac{b}{v}$$

$$C(20) = 85 \implies 20a + \frac{b}{20} = 85$$
 (1)

$$C(40) = 50 \implies 40a + \frac{b}{40} = 50$$
 (2)

$$2 \times (2) \qquad \Rightarrow 80a + \frac{b}{20} = 100 \quad (3)$$

$$(3)-(1) \Rightarrow 60a = 15$$

$$a = \frac{1}{4}$$

Substituting in (1) gives $\frac{b}{20} = 80$. Hence $a = \frac{1}{4}$ and b = 1600.

(ii)
$$C(v) = \frac{1}{4}v + 1600v^{-1}$$

 $C'(v) = \frac{1}{4} - 1600v^{-2}$
 $= \frac{v^2 - 6400}{4v^2}$

$$\therefore C'(v) = 0 \implies v^2 = 6400$$

$$v = 80$$

$$C''(v) = 3200v^{-3} \implies C''(80) > 0$$

Hence minimum cost C occurs when v = 80. Most economical average speed is $80 \,\mathrm{kmh^{-1}}$.

7. (i)
$$y = (x-3)\sqrt{x}$$

Domain: $\{x: x \ge 0\}$

y-intercept: $x = 0 \Rightarrow y = 0$

x-intercepts: $y = 0 \implies x = 0, x = 3$

$$y = (x-3)x^{\frac{1}{2}}$$

$$y = x^{\frac{3}{2}} - 3x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{1}{2}} \qquad \frac{d^2y}{dx^2} = \frac{3}{4}x^{-\frac{1}{2}} + \frac{3}{4}x^{-\frac{3}{2}}$$

$$= \frac{3}{2}x^{-\frac{1}{2}}(x-1) \qquad \qquad = \frac{3}{4}x^{-\frac{1}{2}}(x+1)$$

$$\frac{dy}{dx} = \frac{3(x-1)}{2\sqrt{x}} \qquad \frac{d^2y}{dx^2} = \frac{3(x+1)}{4x\sqrt{x}}$$

Stationary points:

$$\frac{dy}{dx} = 0 \implies x = 1$$

$$x=1 \implies \frac{d^2y}{dx^2} > 0$$

When
$$x = 1$$
, $y = (1-3)\sqrt{1} = -2$

 \therefore (1, -2) is a minimum turning point.

Points of inflexion:

Since $\frac{d^2y}{dx^2} > 0$ for all x in the domain, the curve has no points of inflexion and is always concave up.

Figure 14.45

(ii) Domain: $\{x: x \ge 0\}$ Range: $\{y: y \ge -2\}$

(i) $\frac{dy}{dx} = 0$ and changes sign at x = 0, x = 2. \therefore turning points occur at x = 0, x = 2. $x < 0 \Rightarrow \frac{dy}{dx} < 0$ and f is decreasing. $0 < x < 2 \Rightarrow \frac{dy}{dx} > 0$ and f is increasing. $x > 2 \Rightarrow \frac{dy}{dx} < 0$ and f is decreasing.

Hence as x increases, f decreases to a minimum value at x = 0, then increases to a maximum value at x = 2, then decreases again.

y = f(x) has a maximum turning point at x = 2.

(ii) $\frac{d^2y}{dx^2}$ is the derivative with respect to x of the function $\frac{dy}{dx}$. Hence $\frac{d^2y}{dx^2} < 0$ when $\frac{dy}{dx}$ is decreasing, that is for x > 1. Hence the curve y = f(x) is concave down for x > 1.