PAST EXAMINATION QUESTIONS:

CSSA 2004

Question 8

(a)

PQ and RS are two chords of a circle which intersect at M inside the circle. MN is the perpendicular from M to SQ. L is the point on NM produced such that LP is perpendicular to PQ.

- (i) Copy the diagram.
- (ii) Show that $\triangle PML|||\triangle NMQ|$

(iii) Hence show that $LR \perp RS$.

CSSA 2003

(7) (a)

ABCD is a cyclic quadrilateral. DA produced and CB produced meet at P. T is a point on the tangent at D to the circle through A, B, C and D. PT cuts CA and CD at E and F respectively. TF = TD.

(i) Copy the diagram.

(ii) Show that AEFD is a cyclic quadrilateral.

(iii) Show that PBEA is a cyclic quadrilateral.

CSSA 2001

 $\overline{(7)}$

(a)

A is a point outside a circle with centre O. P is a second point outside the circle such that PT = PA where PT is a tangent to the circle at T. AO cuts the circle at D and C. PC cuts the circle at B. AB cuts the circle at E.

(i) Copy the diagram. (ii) Show that $\triangle PBT \parallel \triangle PTC$.

2

\boldsymbol{C}	F	Λ	Λ.	- VFAR	12 -	FXT 2	CIRCLE	GEON	METRY -	SPECIM	JEN P	APFI
L.	. 1	٠1،	/1. –	- 1 DAIN	12-	17/11/2	CHYCLE	CHADI	/III	OFFICE	VIIIVIT	MILIT

4

(iii) Show that ΔΑΡΒ III ΔCPA.

3

(iv) Hence show that DE is parallel to AP.

3

CSSA 2000

8. (a)

In the diagram, AB and AC are tangents from A to the circle with centre O, meeting the circle at B and C. ADE is a secant of the circle. G is the midpoint of DE. CGproduced meets the cicle at F.

(i) Copy the diagram. (ii) Show that ABOC and AOGC are cyclic quadrilaterals.

(iii) Show that BF||ADE.

CSSA '99

ABCD is a cyclic quadrilateral. The diagonals AC and BD intersect at right angles at X. M is the midpoint of BC. MX produced meets AD at N.

- (i) Copy the diagram showing the above information.
- (ii) Show that $M\hat{B}X = M\hat{X}B$

(iii) Show that MN is perpendicular to AD.

CSSA '98

The two circles intersect at A and D. P is a point on the major arc AD of one circle. The other circle had radius r, and PA produced and PD produced meet the other circle at B and C respectively. $\angle APD = \alpha$ and $\angle ACD = \beta$.

(i) Show that $BC = 2r \sin(\alpha + \beta)$.

(ii) As P moves along the major arc AD on its circle, show that the length of the chord BC in the other circle is a constant.

(iii) If the two circles have equal radii, show that $BC = (2\cos\alpha).AD.$