C.E.M.TUITION

Name:

Review Topic: Kinematics

(HSC Course - Paper 1)

Year 12 - 2 Unit

- 1. A point moving in a straight line is distant x metres from the origin 0 at time t seconds, where $x = t^3 3t^2 + 3t + 1$.
 - (a) Find the velocity and acceleration at any time t.
 - (b) Find the initial velocity and acceleration.
 - (c) At what time is the velocity zero?
 - (d) At what time is the acceleration zero? Find its velocity and position then.
 - (e) Between what times will the velocity be positive?

- 2. The velocity v(t) ms⁻¹ of a particle moving in a straight line at any time t seconds, $t \ge 0$, is v(t) = 2t 4.
 - (a) When is the particle at rest?
 - (b) If it is known that the particle passes through the origin after 5 seconds, find an expression for x(t) and hence its initial position.

- 3. A particle moves such that its velocity after t seconds is given by $v = 3t^2 6t$ metres per second. Find:
 - (a) the distance travelled in the third second;
 - (b) its acceleration when t = 2;
 - (c) its velocity when the acceleration ceases.

- 4. The acceleration a metres per second per second of a moving object is given at time t seconds ($t \ge 0$) by a = 6t 18. If the particle starts from the origin, with a velocity of 24 metres per second, find:
 - (a) when and where the particle comes to rest;
 - (b) its position and velocity when the acceleration is zero.

- 5. A particle moves in a straight line, and, at any time t seconds, its displacement from a fixed origin on the line is x metres, where $x = 2 + 2\cos 2t$, $0 \le t \le 2\pi$.
 - (a) Draw the graph of x as a function of t.
 - (b) Express the velocity v, in terms of t.
 - (c) For what values of t is the particle stationary?
 - (d) Show that the acceleration of the particle at the origin is 8 ms^{-2} .

1. (a)
$$x = t^3 - 3t^2 + 3t + 1$$

$$v = \frac{dx}{dt} = 3t^2 - 6t + 3$$

$$\therefore \text{ velocity } v = 3t^2 - 6t + 3$$

$$\alpha = \frac{dv}{dt} = \frac{d^2x}{dt^2} = 6t - 6$$

$$\therefore \text{ acceleration } \alpha = 6t - 6.$$

(b) Initial
$$\therefore$$
 $t = 0$
 \therefore subs. $t = 0$ in
 $v = 3t^2 - 6t + 3$
 $= 3$

∴ initially, velocity is 3 ms⁻¹. Also, subs t = 0 in a = 6t - 6∴ a = -6∴ initially, acceleration is -6 ms⁻².

(c)
$$v = 0$$
 : $3t^2 - 6t + 3 = 0$
: $t^2 - 2t + 1 = 0$
(t-1)² = 0
t = 1

.: velocity zero after 1 second.

(d)
$$a = 0$$
 $\therefore 6t - 6 = 0$
 $6t = 6$
 $t = 1$
Now, from (c),
when $t = 1$ $\therefore v = 0$
Also, subs. $t = 1$ in
 $x = t^3 - 3t^2 + 3t + 1$
 $= (1)^3 - 3(1)^2 + 3(1) + 1$
 $= 1 - 3 + 3 + 1$

.: acceleration zero after one second, when velocity is 0 ms⁻¹ and its position is 2 m to the right of origin.

(e)
$$v > 0$$
 : $3t^2 - 6t + 3 > 0$
: $t^2 - 2t + 1 > 0$
(t-1)² > 0
Now, $(t-1)^2 > 0$ for all t
except $t = 1$ [which gives
 $(1-1)^2 = 0$],

 \therefore velocity positive $0 \le t < 1$ and t > 1.

2. (a)
$$v(t) = 2t - 4$$

at rest $v(t) = 0$
 $2t - 4 = 0$
 $2t = 4$
 $t = 2$

∴ particle at rest after 2 seconds.

(b)
$$x(t) = \int v \, dt$$

 $\therefore x(t) = \int 2t - 4 \, dt$
 $\therefore x(t) = t^2 - 4t + c$
Now, $x = 0$ when $t = 5$
 $\therefore 0 = 5^2 - 4(5) + c$
 $\therefore 0 = 25 - 20 + c$
 $0 = 5 + c$
 $c = -5$
 $\therefore x(t) = t^2 - 4t - 5$
Now, initial position
 $\therefore t = 0$,
 $\therefore \text{ subs. } t = 0 \text{ in } x$
i.e. $x = 0^2 - 4(0) - 5$
 $= -5$

∴ initially, particle is 5 metres to the left of the origin 0.

3. (a)
$$v = 3t^2 - 6t$$

$$\therefore x = \int_{2}^{3} 3t^2 - 6t \, dt$$
third second is from $t = 2$ to $t = 3$

$$= \left[t^3 - 3t^2\right]_{2}^{3}$$

$$= (27 - 27) - (8 - 12)$$

$$= 0 - (-4)$$

$$= 0 + 4$$

$$= 4$$

: distance travelled is 4 m.

(b)
$$v = 3t^2 - 6t$$

 $\therefore a = 6t - 6$
Subs. $t = 2$ in $a = 6t - 6$
 $= 6(2) - 6$
 $= 6$

 \therefore acceleration is 6 ms⁻².

(c)
$$a = 6t - 6$$

acceleration ceases, $\therefore a = 0$
 $\therefore 6t - 6 = 0$
 $6t = 6$
 $\therefore t = 1$
Now, subs. $t = 1$ in
 $v = 3t^2 - 6t$
 $= 3(1)^2 - 6(1)$
 $= 3 - 6$
 $= -3$
 \therefore velocity is -3 ms⁻¹
when acceleration ceases
(at 1 second).

4. (a)
$$a = 6t - 18$$

 $v = \int 6t - 18 dt$
 $\therefore v = 3t^2 - 18t + c$
Now, $t = 0$, $v = 24$
 $\therefore 24 = 3(0)^2 - 18(0) + c$
 $\therefore c = 24$
 $\therefore v = 3t^2 - 18t + 24$
Comes to rest $\therefore v = 0$
 $\therefore 3t^2 - 18t + 24 = 0$
 $\therefore t^2 - 6t + 8 = 0$
 $(t - 4)(t - 2) = 0$
 $t = 4, 2.$

Particle comes to rest after 2 seconds and again after 4 seconds.

Now,
$$x = \int 3t^2 - 18t + 24 dt$$

 $= t^3 - 9t^2 + 24t + k$
But, 'starts from origin',
 $\therefore x = 0, t = 0$ in
 $x = t^3 - 9t^2 + 24t + k$
 $\therefore 0 = k$
 $\therefore k = 0$
 $\therefore x = t^3 - 9t^2 + 24t$
Now, subs. $t = 4$ in
 $x = t^3 - 9t^2 + 24t$
 $= 4^3 - 9(4)^2 + 24(4)$
 $= 64 - 144 + 96$
 $= 16$.

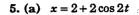
Also, subs.
$$t = 2$$
 in
 $x = t^3 - 9t^2 + 24t$
 $= 2^3 - 9(2)^2 + 24(2)$
 $= 8 - 36 + 48$
 $= 20$.

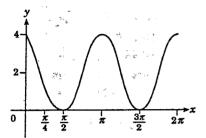
.. particle comes to rest after 2 seconds at 20 m to right of origin and after 4 seconds at 16 m to the right of origin.

(b) acceleration zero, $\therefore a = 0$ $\therefore 6t - 18 = 0$ 6t = 18 t = 3Subs. t = 3 in $x = t^3 - 9t^2 + 24t$ $= (3)^3 - 9(3)^2 + 24(3)$ = 27 - 81 + 72 = 18. Also, subs. t = 3 in

Also, subs.
$$t = 3$$
 in
 $v = 3t^2 - 18t + 24$
 $v = 3(3)^3 - 18(3) + 24$
 $= 27 - 54 + 24$
 $= -3$.

∴ the object's acceleration is zero, at position 18 m to the right of the origin where the velocity is 3 ms⁻¹ towards the origin.





- **(b)** $v = -4 \sin 2t$
- (c) Let v = 0

 $\therefore -4\sin 2t = 0$

 $\therefore \sin 2t = 0$

 $2t = 0, \pi, 2\pi, 3\pi, 4\pi$ $t = 0, \frac{\pi}{2}, \frac{3\pi}{2}, 2\pi$

 $\therefore \text{ particle stationary if } t = 0,$ $\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi.$

$$(\mathbf{d}) \quad a = \frac{dv}{dt} = -8\cos 2t$$

Now, subs. x = 0 in

 $x = 2 + 2\cos 2t$

 $0=2+2\cos 2t$

 $2\cos 2t = -2$

 $\cos 2t = -1$

 $2t=\pi,3\pi$

 $t = \frac{\pi}{2}, \frac{3\pi}{2}.$

Now subs. $t = \frac{\pi}{2}$ in

 $a = -8\cos 2t$

 $=-8\cos\pi$

 $=-8\times-1$

= 8.

Similarly for $t = \frac{3\pi}{2}$

 \therefore acceleration at the origin is 8 ms⁻².