C.E.M.TUITION

Name:

Review Topic: Kinematics

(HSC Course - Paper 3)

Year 12 - 2 Unit

- 11. A particle moves so that its displacement x metres from an origin after t seconds is given by $x = t^3 6t^2 + 9t + 1$.
 - (a) Show that the particle will move forward for one second, and then return passing its starting point after three seconds.
 - (b) Find the total distance travelled in the first three seconds.
 - (c) Show that the particle reaches it greatest velocity after 2 seconds and determine where this occurs.

- 12. For a particle moving in a straight line, its acceleration at time t seconds is given as a = 6t. Its velocity is 10 ms⁻¹ after 2 seconds at a point 1 metre to the right of a fixed point 0.
- (a) Find an expression for the velocity v, in terms of t.
 - (b) Find an expression for the displacement x, in terms of t.
 - (c) Show that the particle must pass through 0 during the second second.

- 13. A particle moves along a straight line so that its distance x, in metres, from a fixed point 0, is given by $x = 1 \cos \pi t$, where the time t is measured in seconds from t = 0.
 - (a) Where is the particle initially?
 - (b) Sketch the graph of x as a function of t, where $0 \le t \le 3$.
 - (c) Where and when is the particle next at rest?

- 14. The acceleration a metres per second per second of a moving object is given at time t seconds, by $a = 4\sin 2t$. At time t = 0, the object is at a point x = 0 and travelling with velocity v = -1 metres per second.
 - (a) Find the velocity v and the displacement x as a function of t, for $t \ge 0$.
 - (b) Find, for $t \le \pi$, the values of t for which the object is stationary.
 - (c) Find, for $t \le \pi$, the largest value of x.

- 15. A particle moving in a straight line is distant x metres from the origin 0 at time t seconds, where $x = t(t-2)^2$.
 - (a) Find when the particle is at the origin.
 - **(b)** Show that v = (t-2)(3t-2).
 - (c) On a number plane, graph velocity v as a function of time t.
 - (d) Find where the particle is stationary, and its acceleration at those points.

- 11. (a) $x = t^3 6t^2 + 9t + 1$ $\therefore v = \frac{dx}{dt} = 3t^2 - 12t + 9$
 - Let v = 0
 - $3t^{2}-12t+9=0$ $t^{2}-4t+3=0$ (t-3)(t-1)=0
 - (t-3)(t-1) = 0t = 3, 1
 - .. particle stops after one second and three seconds. Now, check position of particle:
 - subs. t = 0 in x : x = 1subs. t = 1 in x
 - $\therefore x = 1 6 + 9 + 1$ = 5
 - subs. t = 3 in x
 - $x = (3)^3 6(3)^2 + 9(3) + 1$ = 27 54 + 27 + 1
 - ... particle begins at one unit to right of origin, is five units to right of origin after one second and returns to one unit to right of origin after

 3 seconds.

- (b) From the diagram in (a), particle travels 8 metres in first 3 seconds.
- (c) $v = \frac{dx}{dt} = 3t^2 12t + 9$

Greatest velocity when acceleration is zero.

$$\left(\frac{dv}{dt}=0\right)$$

- $\therefore a = \frac{dv}{dt} = 6t 12 = 0$
 - 6t = 12 t = 2

Subs. t = 2 in x $\therefore x = (2)^3 - 6(2)^2 + 9(2) + 1$ = 8 - 24 + 18 + 1

.. greatest velocity at a position 3 metres to the right of origin.

- 12. (a) a = 6t $v = \int 6t \ dt$
 - $=3t^2+c$
 - Now, t = 2, v = 10 $\therefore 10 = 3(2)^2 + c$
 - 10 = 12 + c $\therefore c = -2$
 - $v = 3t^2 2.$
 - (b) $x = \int v \, dt$ $= \int 3t^2 2 \, dt$ $= t^3 2t + k$
 - Now, t = 2, x = 1
 - $1 = (2)^3 2(2) + k$ 1 = 8 4 + k
 - 1=4+k
 - ∴ k = -3
 - $\therefore x = t^3 2t 3.$
 - (c) Subs. t = 1 in x $x = (1)^3 - 2(1) - 3$ = 1 - 2 - 3 = -4
 - Subs. t = 2 in x
 - $x = (2)^3 2(2) 3$ = 8 4 3 = 1
 - .. particle is 4 m to left of 0 after 1 second and 1 m to right of 0 after 2 seconds,
 - .. passes through 0 in second second.
- 13. (a) $x = 1 \cos \pi t$
 - Subs. t = 0 in x
 - $\therefore x = 1 \cos 0$ = 1 1
 - $\therefore x = 0$
 - .. particle is at origin 0.
 - (b) $x = 1 \cos \pi t$ $0 \qquad 1 \qquad 2 \qquad 3$
 - (c) $x = 1 \cos \pi t$ $v = \frac{dx}{dt} = \pi \sin \pi t = 0$
 - $\therefore \quad \sin \pi t = 0$
 - $\pi t = 0, \pi, 2\pi, 3\pi$ t = 0, 1, 2, 3.
 - Particle is first at rest when t = 0,
 - \therefore next at rest at t = 1.

- Now, subs t = 1 in x
- $\therefore x = 1 \cos \pi(1)$ $= 1 \cos 1$ = 0
- .: next at rest after 1 second at origin 0.
- 14. (a) $a = 4 \sin 2t$

$$v = \int a \, dt = \int 4 \sin 2t \, dt$$
$$= -2 \cos 2t + c.$$

- Now, t = 0, v = -1
- $\therefore -1 = -2\cos 0 + c$
- -1 = -2 + c
- c = 1 $v = 1 2\cos 2t$
- \therefore velocity is $v = 1 2\cos 2t$

$$x = \int v \, dt$$

$$= \int 1 - 2\cos 2t \, dt$$

$$= t - \sin 2t + k.$$

- Now, t = 0, x = 0
- $\therefore 0 = 0 \sin 0 + k$
- $\therefore k=0$
- $\therefore x = t \sin 2t$
- (b) v = 0 : $1 2\cos 2t = 0$ $2\cos 2t = 1$
 - $\cos 2t = \frac{1}{2}$
 - $\therefore 2t = \frac{\pi}{3}, \frac{5\pi}{3}$ $\pi 5\pi$
 - 6'6
 ∴ object is stationary after
- $\frac{\pi}{6}$ seconds and $\frac{5\pi}{6}$ seconds. (c) Largest value of x occurs
- when v = 0 or at end-points
 - of domain (i.e. t = 0, $t = \pi$).
 - Subs. t = 0 in x
 - $\therefore x = 0 \sin 0$ = 0
 - Subs. $t = \pi$ in x
 - $\therefore x = \pi \sin \pi$
 - Subs. $t = \frac{\pi}{6}$ in x
 - $\therefore \quad x = \frac{\pi}{6} \sin\frac{\pi}{6}$ $= \frac{\pi}{6} \frac{1}{6}$
 - Subs. $t = \frac{5\pi}{6}$ in x

: greatest value of x is π when $t = \pi$.

15. (a)
$$x = t(t-2)^2$$

 $x = 0$ $\therefore 0 = t(t-2)^2$
 $\therefore t(t-2)^2 = 0$
 $\therefore t = 0, 2$

.. at origin initially and after 2 seconds.

(b)
$$v = \frac{dx}{dt}$$
 [Using Product Rule]
= $(t-2)^2 \cdot 1 + t \cdot 2(t-2) \cdot 1$
= $(t-2)^2 + 2t(t-2)$
= $(t-2)[t-2+2t]$
= $(t-2)(3t-2)$
 $\therefore v = (t-2)(3t-2)$

(d) Stationary when v = 0 $\therefore (t-2)(3t-2) = 0$ $t = 2, \frac{2}{3}.$ When velocity function cuts t axis.

Subs.
$$t = 2$$
 in x
 $\therefore x = 2(2-2)^2$
 $= 0$
Subs. $t = \frac{2}{3}$ in x
 $\therefore x = \frac{2}{3}(\frac{2}{3}-2)^2$
 $= \frac{2}{3}(\frac{16}{9}) = \frac{32}{27}$
 $= 1\frac{5}{27}$.

Now,
$$a = \frac{dv}{dt}$$

 $= (3t-2)1+(t-2)3$
or $v = 3t^2-8t+4$
 $\frac{dv}{dt} = 6t-8$
 $= 3t-2+3t-6$
 $= 6t-8$.

Subs.
$$t = 2$$
 in a

$$a = 6(2) - 8$$

$$= 4$$

Subs.
$$t = \frac{2}{3}$$
 in a

$$\therefore a = 6\left(\frac{2}{3}\right) - 8$$

$$= -4$$

∴ particle is stationary after $\frac{2}{3}$ second at $1\frac{5}{27}$ m to right of 0 with acceleration of -4 ms⁻², and stationary after 2 seconds at origin 0 with acceleration of 4 ms⁻².