NAME:			

C.E.M. TUITION

YEAR 12 – MATHS EXT.1

REVIEW TOPIC: PARAMETRIC EQUATIONS OF THE PARABOLA

Received on	Check corrections
	on pages:
Completed on	
Checked by	

Tutor's Initials

Dated on

EXERCISES:

- (1) The parabola C is given by $y^2 = 4ax$ where a is a constant. P, with co-ordinates $(ap^2, 2ap)$, is a point on the curve.
 - (a) Prove that the point P lies on C,

[1]

(b) Find the equation of the tangent to C at P. Also show that the equation of the normal at P is

$$y + px - 2ap - ap^3 = 0.$$
 [5]

(c) The tangent at P meets the y axis at R, and the normal at P meets the y axis at S. If RS = 6a, show that

$$p^3 + p - 6 = 0. ag{4}$$

(2) A curve C is given by the parametric equations

$$x = 3t^2, \qquad y = \frac{3}{t} \qquad t \neq 0$$

(a) Find the cartesian equation of C.

[2]

(b) Find the value of the parameter at the point P(27, -1) Find the equation of the tangent at this point.

[5]

- (3) The curve C is given by $y^2 = 4ax$ where a is a constant. $P(ap^2, 2ap)$, and $Q(aq^2, 2aq)$ lie on the curve.
 - (a) Find the equations of the tangents at P and Q to the curve. Show that if pq = -1 the tangents intersect at right angles. [6]

(b) Show also that the point F(a, 0) lies on the line PQ if the tangents intersect at right angles. [4]

(4) The equation of a curve is given parametrically by the equations x = 2t - 1, $y = t^2 + 1$.

The diagram of the curve is as follows:

(a) Show that the point P(3, 5) lies on the curve. What is the value of t corresponding to this point?

[2]

(b) Find the equation of the tangent at P(3, 5).

[5]

(c) Find the equation of the tangent to the curve which is perpendicular to the tangent at P. If this tangent touches the curve at Q, find the coordinates of Q. [4]

- (5) The parabola C is given by $y^2 = 4ax$ where a is a constant. P, with co-ordinates $(ap^2, 2ap)$, is a point on the curve.
 - (a) Prove that *P* lies on the curve.

[1]

(b) Find the equation of the tangent to C at P.

[4]

(c) Show that the tangents at the points P and $Q(aq^2, 2aq)$ meet at the point L with co-ordinates (apq, a(p+q)). [3]

(d) If L lies on the line x + a = 0, show that pq = -1, and also show that the line through P and Q passes through the point with co-ordinates (a, 0).

(6) (a)

(i) Show that the points defined by $x = 2\cos t$, $y = \cos 2t$ lie on a parabolic arc.

(ii) Sketch the arc, showing its end points and the focus and directrix of the parabola.

 $P(2at, at^2)$ is a variable point on the parabola $x^2 = 4ay$, whose focus is S. Q(x, y) divides the interval from P to S in the ratio $t^2:1$.

Find x and y in terms of a and t.

(ii) Verify that $\frac{y}{x} = t$.

Prove that, as P moves on the parabola, Q moves on a circle, and state its (iii) centre and radius.

SOLUTIONS:

(1) (a)
$$P$$
 has co-ordinates $(ap^2, 2ap)$
 \Rightarrow At P $x = ap^2$, $y = 2ap$
 $4ax = 4a \times ap^2$ $y^2 = (2ap)^2$
 $\Rightarrow = 4a^2p^2$ $\Rightarrow P$ lies on the curve C

(b)
$$x = ap^{2}$$

$$\frac{dx}{dp} = 2ap$$

$$\frac{dy}{dx} = \frac{dy}{dp} \times \frac{dp}{dx}$$

$$= 2a \times \frac{1}{2ap}$$

$$= \frac{1}{p}$$

At *P* the gradient of the tangent is $\frac{1}{p}$

Equation of tangent is $(y - y_1) = m(x - x_1)$

Equation of tangent at *P*

$$y-2 ap = \frac{1}{p}(x-ap^2)$$

$$\times p$$

$$py-2ap^2 = x-ap^2$$

$$py = x+ap^2$$

The normal is perpendicular to the tangent at P

 \Rightarrow Gradient of normal = -p (Using $m_1 m_2 = -1$)

Equation of normal at P

$$y - 2ap = -p(x - ap^{2})$$

$$\Rightarrow y - 2ap = -px + ap^{3}$$

$$\Rightarrow y + px - 2ap - ap^{3} = 0$$

(c) When a curve cuts the y axis x = 0

÷ p

The point at which the tangent intersects with the y axis is given by

$$py = ap^2$$
$$y = ap$$

 \Rightarrow Tangent intersects with the y axis at R(0, ap)

The point at which the normal intersects with the y axis is given by

$$y - 2ap - ap^3 = 0$$
$$y = 2ap + ap^3$$

 \Rightarrow Normal intersects with the y axis at $S(0,2ap + ap^3)$

$$RS = OS - OR$$

$$= 2ap + ap^{3} - ap$$

$$= ap^{3} + ap$$
But
$$RS = 6a$$

$$\Rightarrow ap^{3} + ap = 6a$$

$$\div a \qquad p^{3} + p - 6 = 0$$

(2) (a)
$$x = 3t^2$$
 $y = \frac{3}{t}$

By eliminating the parameter t, we can obtain the cartesian equation of C.

$$t = \frac{3}{y}$$
Substituting
$$x = 3\left(\frac{3}{y}\right)^{2}$$

$$xy^{2} = 27$$

(b) At the point
$$P(27, -1)$$

$$3t^{2} = 27$$
 and
$$\frac{3}{t} = -1$$

$$t = -3 \text{ at } P$$

$$x = 3t^{2}$$

$$\frac{dx}{dt} = 6t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= -\frac{3}{t^{2}} \times \frac{1}{6t}$$

$$= -\frac{1}{2t^{3}}$$

Gradient of tangent at the point P(27, -1) where t = -3

$$= -\frac{1}{2(-3)^3}$$
$$= \frac{1}{54}$$

Equation of tangent at P(27, -1)

$$(y - y_1) = m(x - x_1)$$

$$y - (-1) = \frac{1}{54}(x - 27)$$

$$\times 54$$

$$54y + 54 = x - 27$$

$$x - 54y = 81$$

(3) (a)

The parametric equations of the curve C are

$$x = at^{2}$$

$$\frac{dx}{dt} = 2at$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= 2a \times \frac{1}{2at}$$

$$= \frac{1}{t}$$

At the point $P(ap^2, 2ap)$ where t = p

Gradient of tangent = -

Equation of tangent

$$y-y_1 = m(x-x_1)$$

$$y-2ap = \frac{1}{p}(x-ap^2)$$

$$py-2ap^2 = x-ap^2$$

$$py = x+ap^2$$

At the point $Q(aq^2, 2aq)$ t = qEquation of tangent

$$qy = x + aq^2$$

Gradient of tangent at $P = \frac{1}{p}$ Gradient of tangent at $Q = \frac{1}{p}$

Condition for perpendicular lines is, $m_1m_2 = -1$

$$\Rightarrow \frac{1}{p} \times \frac{1}{q} = -1$$

$$\Rightarrow pq = -1$$

(b)

To show F lies on the line PQ we can show

Gradient of line PF = Gradient of line FQ

Gradient of line
$$PF$$
 = $\frac{y_2 - y_1}{x_2 - x_1}$
= $\frac{2ap - 0}{ap^2 - a}$
= $\frac{2ap}{a(p^2 - 1)}$
= $\frac{2p}{(p^2 - 1)}$
Gradient of line FQ = $\frac{0 - 2aq}{a - aq^2}$
= $\frac{-2q}{(1 - q^2)}$

However, as the tangents intersect at right angles, pq = -1

$$\Rightarrow \qquad q = -\frac{1}{p}$$
∴ Gradient of line FQ

$$= \frac{-2\left(-\frac{1}{p}\right)}{1 - \left(-\frac{1}{p}\right)^2}$$

$$= \frac{\frac{2}{p}}{\left(1 - \frac{1}{p^2}\right)}$$

Multiply top and bottom by p^2

Gradient of line FQ

 \therefore Gradient of line *PF* = Gradient of line FQ \Rightarrow

F lies on the line PQ

- (4)
- If the point P(3, 5) lies on the curve then (a)

$$3 = 2t - 1$$

$$t = 2$$
when $t = 2$

$$y = (2)^{2} + 1$$

$$= 5$$

 \Rightarrow P(3, 5) lies on the curve.

The value of the parameter corresponding to this point is t = 2

(b)
$$x = 2t - 1$$

$$\frac{dx}{dt} = 2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= 2t \times \frac{1}{2}$$

$$= t$$
At the point $P(3, 5)$ $t = 2$

$$\Rightarrow \text{ Gradient of tangent at } P = 2$$
Equation of tangent is $y - y_1 = m(x - x_1)$

$$y - 5 = 2(x - 3)$$
Equation of tangent at P is $y = 2x - 1$

(c) Gradient of tangent at P = 2Gradient of perpendicular tangent = $-\frac{1}{2}$

> Let t' be the value of the parameter at the point where the perpendicular tangent touches the curve

$$t' = -\frac{1}{2} \text{ because } \frac{dy}{dx} = t' \text{ using result}$$
from (b)

Co-ordinates of point of contact $Q\left(2\left(-\frac{1}{2}\right) - 1, \left(-\frac{1}{2}\right)^2 + 1\right)$

$$Q\left(-2, 1\frac{1}{4}\right)$$

Equation of tangent at Q

$$y - \frac{5}{4} = -\frac{1}{2}(x - (-2))$$

$$4y - 5 = -2x - 4$$

$$\Rightarrow 2x + 4y = 1$$

(5)

(a)
$$P$$
 has co-ordinates $(ap^2, 2ap)$
 \Rightarrow at P $x = ap^2$, $y = 2ap$
 $4ax = 4a \cdot ap^2$ $y^2 = (2ap)^2$
 $= 4a^2p^2$ $= 4ax$
 \Rightarrow P lies on the curve C

(b)
$$x = ap^{2} \qquad y = 2ap$$

$$\frac{dx}{dp} = 2ap \qquad \frac{dy}{dp} = 2a$$

$$\frac{dy}{dx} = \frac{dy}{dp} \times \frac{dp}{dx}$$

$$= 2a \times \frac{1}{2ap}$$

$$= \frac{1}{p}$$

Equation of tangent at P

×p

$$(y-y_1) = m(x-x_1)$$

$$y-2ap = \frac{1}{p}(x-ap^2)$$

$$py = x+ap^2$$

(c) The equation of the tangent at $Q(aq^2, 2aq)$ is

$$qy = x + aq^2$$

Solve the equations of the tangents simultaneously in order to find the point of intersection.

Substitute y = a(p + q) in equation $\{1\}$

$$ap(p+q) = x + ap^2$$

$$\Rightarrow$$
 $x = apq$

 \Rightarrow Point of intersection L has co-ordinates (apq, a(p+q))

(d) Let A be point (a, o).

Then the line through P and Q passes through A if gradient of PA is equal to the gradient of AQ

gradient of
$$PA = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{2ap - 0}{ap^2 - a}$$

$$= \frac{2 \cancel{/} p}{\cancel{/} (p^2 - 1)}$$

$$= \frac{2p}{(p^2 - 1)}$$
and gradient of $AQ = \frac{0 - 2aq}{a - aq^2}$

$$= \frac{-2\cancel{/} q}{\cancel{/} (1 - q^2)}$$

$$= \frac{-2q}{1 - q^2}$$

$$= \frac{-2(-\frac{1}{p})}{(1 - \frac{1}{p^2})} \text{ using } pq = -1$$

$$= \frac{2p}{(p^2 - 1)}$$

$$= \text{ gradient of } PA \text{ as required}$$

- gradient of PA as required: (a, o) lies on the line PQ

(6) (a) (i) $y = 2\cos^{2}t - 1$ $= 2\left(\frac{x}{2}\right)^{2} - 1$ $x^{2} = 2(y+1)$

Since $-1 \le \cos t \le 1$, $-2 \le x \le 2$.

(7) $P(2at, at^{2}), S(0, a)$ (i) $x = \frac{2at + 0}{t^{2} + 1}, \quad y = \frac{at^{2} + at^{2}}{t^{2} + 1}$ $= \frac{2at}{t^{2} + 1} \qquad = \frac{2at^{2}}{t^{2} + 1}$

(ii)
$$\frac{y}{x} = \frac{2at^2}{t^2+1} \cdot \frac{t^2+1}{2at} = t$$

(iii)
$$x = \frac{2at}{t^2 + 1}$$

$$= \frac{2a\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)^2 + 1}$$

$$= \frac{2axy}{y^2 + x^2}$$

$$\therefore x(x^2 + y^2) = 2axy$$

$$x^2 + y^2 = 2ay$$

$$x^2 + y^2 - 2ay + a^2 = a^2$$

$$x^2 + (y - a)^2 = a^2,$$
which is the circle, centre $(0, a)$, radius a .