C.E.M.TUITION

Name:

Review Topic: Trapezoidal & Simpson's Rules

(HSC Course - Paper 2)

Year 12 - Mathematics

PHONE: 9666-3331

FAX: 9316-4996

MOBILE: 0412 880 475

The loop of the curve $y^2 = x(4-x)^2$ has an area of A units². (Note symmetry about x axis.)

(a) Complete the table of values for $y = (4-x)\sqrt{x}$, $0 \le x \le 4$.

x	0	1	2	3	4
У					

- (b) Use the table of values and Simpson's Rule with 5 function values to evaluate $\int_0^5 (4-x)\sqrt{x} \ dx.$
- (c) Calculate A correct to 2 decimal places.

8. A bike rider racing around an oval track has her speed, v, in km/h recorded at 3 minute intervals as recorded in the following table:

time(t) mins	0	3	6	9	12
speed (v) km/h	0	14	18	16	15

- (a) Explain why the distance x, in km travelled by the rider over the 12 minutes, is given by $x = \int_0^{\frac{1}{3}} v \, dt$.
- (b) Calculate x using the Trapezoidal Rule with four subintervals.

9. Complete this table of values for $y = \frac{e^x + e^{-x}}{e^x}$.

x	0	0.5	1
У			

- (a) Using Simpson's Rule with three function values, estimate the value of $\int_0^1 \frac{e^x + e^{-x}}{e^x} dx$ correct to 2 decimal places.
- (b) Show that $\frac{e^x + e^{-x}}{e^x} = 1 + e^{-2x}$.
- (c) Calculate the area under the curve $y = \frac{e^x + e^{-x}}{e^x}$ between x = 0 and x = 1 by integration. Find the difference between the actual area and the approximate area correct to two decimal places.

This diagram shows two unknown curves, $y = \phi(x)$ and $y = \psi(x)$, drawn for $4 \le x \le 12$. The ordinates are marked on the diagram.

(a) Complete these tables of value for $y = \phi(x)$ and $y = \psi(x)$.

x	4	8	12
$\phi(x)$			

x	4	8	12
$\psi(x)$			

(b) Using the Trapezoidal Rule and 3 function values, calculate the area contained between the curves $y = \phi(x)$ and $y = \psi(x)$.

11.

- (a) Use Simpson's Rule with five function values to calculate the area under the curve v = f(t) between t = 0 and t = 20.
- (b) If the graph represents the velocity of a particle moving in a straight line, such that at time t the velocity is v ms⁻¹, calculate the distance travelled in the first 20 seconds.

12.	Use the Trapezoidal Rule with three function values to evaluate
	$\int_{-\infty}^{1} \sin \pi x dx.$
	$\sin \pi x dx$.
	<i>J</i> 0

Compare this answer with the actual value of the integral.

7. (a)	x	0	1	2	3	4	h = 1 - 0 = 1	(TODD Simpson)
	У	0	3	2.828	1.732	0		

(b)
$$\int_{0}^{5} (4-x)\sqrt{x} dx = \frac{h}{3} \left[first + last + 2 \text{ odd} + 4 \text{ even} \right]$$

$$= \frac{1}{3} \left[f(0) + f(4) + 2f(2) + 4 \left[f(1) + f(3) \right] \right]$$

$$= \frac{1}{3} \left[0 + 0 + 2(2 \cdot 828) + 4(3 + 1 \cdot 732) \right]$$

$$= 8 \cdot 772 \cdot 016 \cdot 9.$$

(c) Total
$$A = 2 \times \int_{0}^{4} (4-x)\sqrt{x} dx$$

= 2×8.7720169
= 17.544034 .

Area is 17.54 units2.

$$\int_{0}^{4} (4-x)\sqrt{x} dx$$
represents the area
above the x axis and

below the curve.

$$v = f(t)$$

$$(\mathbf{a}) \ \mathbf{x} = \int_0^{\frac{1}{6}} v \ dt$$

 $12 \text{ mins} = \frac{1}{5} \text{ hour}$

Velocity is $\frac{dx}{dt}$ (rate of change of displacement),

hence distance will be v dt.

This integral is measuring the distance covered over $\frac{1}{5}$ of an hour as velocity has been measured in km/hour.

(b)
$$x = \frac{1}{2}(3)[f(0) + 2f(3) + 2f(6) + 2f(9) + f(12)]$$

= $1 \cdot 5[0 + 2(14) + 2(18) + 2(16) + 15]$ Four strips, $0 - 3$, $3 - 6$, $6 - 9$, and 9

Rider has ridden 166-5 km.

Four strips,
$$0-3$$
, $3-6$, $6-9$, and $9-12$. Strip width = 3

9.
$$y = \frac{e^x + e^{-x}}{e^x}$$
 $x = 0$ 0.5 1 $a = 0, b = 1$ $a + b$ 2 0.5 0

(a)
$$\int_0^1 \frac{e^x + e^{-x}}{e^x} dx = \frac{1}{6} (1 - 0) [f(0) + f(1) + 4f(0.5)]$$
$$= \frac{1}{6} [2 + 1.1353 + 4(1.3679)]$$
$$= 1.4344833 \approx 1.43 \text{ (2 decimal places)}.$$

(b)
$$\frac{e^x + e^{-x}}{e^x} = \frac{e^x}{e^x} + \frac{e^{-x}}{e^x} = 1 + e^{-2x}$$

(c) Approximate area under the curve, using Simpson's Rule, is 1.43 units ² [from (a)].

$$\int_{0}^{1} \frac{e^{x} + e^{-x}}{e^{x}} dx = \int_{0}^{1} 1 + e^{-2x} dx$$

$$= \left[x - \frac{1}{2} e^{-2x} \right]_{0}^{1} = \left[1 - \frac{1}{2} e^{-2} \right] - \left[0 - \frac{1}{2} e^{0} \right]$$

$$= \left[1 - 0.0676676 \right] + \frac{1}{2}$$

$$= 1.4323324 = 1.43 (2 dec. places)$$

Difference is zero when considering areas correct to 2 decimal places. However, from (a), approximate area is 1.4344833, while by integration the area is 1.4323324. Difference is 0.00215094, which is negligible.

· · · · · · · · · · · · · · · · · · ·			
x	4	8	12
$\psi(x)$	3	9	11

(b) Area contained between the curves is the area under higher curve, $y = \psi(x)$, less the area under the lower curve, $y = \phi(x)$.

the curve,
$$y = \psi(x)$$
, less the area under the lower curve, $y = \phi(x)$.
$$A = \int_{4}^{12} \psi(x) \ dx - \int_{4}^{12} \phi(x) \ dx,$$

$$\text{using } A = \frac{h}{2} [\text{first} + \text{last} + 2(\text{remaining})]$$

$$\int_{4}^{12} \psi(x) \ dx = \frac{4}{2} [\psi(4) + \psi(12) + 2\psi(8)] = 2[3 + 11 + 2(9)] = 64.$$

$$\int_{4}^{12} \phi(x) \ dx = \frac{4}{2} [\phi(4) + \phi(12) + 2\phi(8)] = 2[3 + 11 + 2(5)] = 48.$$

Area = 64 - 48 = 16. Area between curves is 16 units².

11. (a)

			v			J,	"	
	15	20	^		Λ	`	(E)	
_	7	0	2					
				2	5	7	\ .	
	an)		0		10	1.5	20	٠,

$$\begin{array}{c|cccc}
f(t) & 2 & 2 & 5 & 7 & 0 \\
\hline
\hline
(TODD Simpson)$$

Area under the curve is 80 units².

(b) This area represents the distance travelled by the particle as $x = \int_0^{20} v \, dt.$ Distance travelled in the first 20 seconds is $\int_0^{20} v \, dt = \int_0^{20} f(t) \, dt = 80.$

Distance travelled in the first 20 seconds is 80 metres.

12. Put
$$I = \int_0^1 \sin \pi x \, dx$$
, where $f(x) = \sin \pi x$.
Two subintervals are $0 - 0.5$, $0.5 - 1$.

Now
$$I = \frac{1}{2}(b-a)[f(a)+f(b)]$$

$$\frac{x}{f(x)} = \frac{0}{0.05} = \frac{1}{0.05}$$

$$I_1 = \frac{1}{2}(0.5-0)[f(0)+f(0.5)]$$

$$I_2 = \frac{1}{2}(1-0.5)[f(0.5)+f(1)]$$

$$\begin{split} \mathbf{I}_1 &= \frac{1}{2} (0.5 - 0) \big[f(0) + f(0.5) \big] & \mathbf{I}_2 = \frac{1}{2} (1 - 0.5) \big[f(0.5) + f(1) \big] \\ &= 0.25 [0 + 1] &= 0.25 [1 + 0] \\ &= 0.25. &= 0.25. \end{split}$$

$$I = I_1 + I_2 = 0.5 \int_0^1 \sin \pi x \, dx = 0.5.$$

For actual value,
$$\int_0^1 \sin \pi x \, dx = \left[-\frac{1}{\pi} \cos \pi x \right]_0^1$$
$$= -\left[\frac{1}{\pi} \cos \pi - \frac{1}{\pi} \cos 0 \right]$$
$$= -\left[\frac{1}{\pi} (-1) - \frac{1}{\pi} (1) \right]$$
$$= -\left[\frac{-2}{\pi} \right]$$
$$= \frac{2}{\pi}$$
$$= 0.636 619 7$$
$$\approx 0.637 (3 dec. places).$$

Actual value is 0-637, which is 0-137 greater than the value found using the Trapezoidal Rule.