Chapter 6

SERIES AND APPLICATIONS

Facts and Formulas

EXERCISE 1

Circle the correct answer:

1. The n^{th} term of an arithmetic sequence is given by:

$$(A) \quad T_n = a + (n-1)d$$

(B)
$$T_n = \frac{n}{2} [2a + (n-1)d]$$

(C)
$$T_n = a + nd$$

(D)
$$T_n = a(n-1)d$$

2. The sum of n terms of an arithmetic series, given a and d.

(A)
$$S_n = \frac{n}{2}[a+l]$$

(B)
$$S_n = \frac{n}{2} \left[a + (n-1)d \right]$$

(C)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

(D)
$$S_n = 2n[2a + (n-1)d]$$

3. The sum of n terms of an arithmetic series, given a and l.

$$(A) S_n = \frac{n}{2} [a+2l]$$

(B)
$$S_n = \frac{n}{2} [a+l]$$

(C)
$$S_n = n[a+l]$$

(D)
$$S_n = \frac{n}{2} [2a+l]$$

4. The n^{th} term of a geometric progression is given by:

(A)
$$T_n = ar^n$$

(B)
$$T_n = a + r^n$$

(C)
$$T_n = ar^{n-1}$$

$$(D) \quad T_n = a + r^{n-1}$$

5. The sum of n terms of a geometric series is given by:

(A)
$$S_n = \frac{a(r^n - 1)}{(r - 1)}$$

(B)
$$S_n = \frac{a(r-1)^n}{(r+1)}$$

(C)
$$S_n = \frac{a^n(r-1)}{(r-1)}$$

(D)
$$S_n = \frac{a(r^n - 1)}{(1 - r)}$$

6. The limiting sum of a geometric series is given by:

$$(A) S_{\infty} = \frac{a}{r-1}$$

(B)
$$S_{\infty} = \frac{a}{r+1}$$

$$(C) S_{\infty} = \frac{a}{1-r}$$

(D)
$$S_{\infty} = \frac{a-1}{r}$$

- 7. The condition for an infinite geometric series to have a limiting sum is:
 - $(A) \qquad r > 1$

(B) r < 1

(C) r > -1

- (D) -1 < r < 1
- 8. Formula for Compound Interest

(A)
$$A = P(1 - \frac{r}{100})^n$$

(B)
$$A = P(1 + \frac{r}{100})^n$$

EXERCISE 2

1. Which of the following are sequences and which are series?:

(b) 2+4+8+16+.....

(c) -7-5-3-1....

- (d) ½, ¼, ½,
- **2.** Find the next two terms in each sequence:

(a) 4, 7, 10, 13,

(b) 2, 6, 18, 54,

(c) 1, 8, 27, 64,

(d) 0, 3, 8, 15, 24,

(e) 1, 1, 2, 3, 5, 8,

Arithmetic Progressions

EXERCISE 3

1. For each of the following, state the common difference:

(a) 6, 9.4, 12.8,

(b) 8, -1, -10, -19, . . .

2. The n^{th} term of an arithmetic sequence

is given by

$$T_n = \frac{5n+4}{2}$$

Evaluate the common difference d.

3.	Find the value of x which makes the
	sequence 19, x, 81 arithmetic.
	1

4. For an A.P. a = 4 and d = 9.

5.* For the A.P.: $\sqrt{5}$, $\sqrt{45}$, $\sqrt{125}$, $\sqrt{245}$,..... Find d and T_{10}

6. Given the sequence 4, 7, 10, 13,

(a) Find T_{20}

(b) Find S ₂₀	10.	x - 8, $3x + 4$, $6x - 10$ are three consecutive terms of an A.P. (a) Evaluate x .
Find S_{15} for the A.P. 8, 12, 16, 20,		(b) State the three terms.
		(c) State the common difference.
Given the sequence 20, 14, 8, 2, (a) Find T_{18}	11.	 y + 3, 2y + 7, 3y + 11, 4y + 15 are four consecutive terms of an A.P. (a) If y = 5 evaluate the terms and state the common difference.
(b) Find S ₁₈		(b) If $y = -10$ evaluate the terms and state the common difference
	12.	Which term of 2, 9, 16, 23, ha a value of 254?
x + 3, $2x - 5$, $4x + 6$ are three consecutive terms of an A.P. (a) Evaluate x .		
(b) State the three terms.	13.	How many terms of 2, 9, 16, 23, are needed to give a sum of 16082?
(c) State the common difference.		

14.*	Which term of -3, 1, 5, 9, 13, is the first term to have a value greater than 200?			

15. How many terms of $8, 5, 2, -1, -4, \ldots$ are needed to give a sum of -4495?

1		
I		
i		:
;	_	
1	•	
•		1
1		ł
1		t
t		1
ı		i
i		- :
:		:
:		
•		
1		1
1		1
J		1
i		
i		
i		:
;		
!		
•		1
1		
1		1
i		1
1		i
		i
ì		
:		
1		
ı		
I		1
1		1
1		i
i		i
i		:
:		:
1		ı
1		
1		t
1		1
1		
1		- :
i		:
	 	 '

Which term of 546, 543, 540, is the first term to be negative?

17.

18. Evaluate $\sum_{n=1}^{18} (23-8n)$.

19. Evaluate $\sum_{n=1}^{12} (1-4n)$.

20. Evaluate $\sum_{n=5}^{30} (6n-10)$.

21. Evaluate k if $\sum_{n=1}^{k} (5n+7) = 1800$.

Find the sum of all integers from 1 to 70 that are not divisible by 9.	(d) S ₂₃
	24.* A bell rings at 6:32 am and then every 3 minutes until it last rings at 10:14 am. Using arithmetic sequences calculate the number of times the bell rings.
The 50 th term of an A.P. is 337. The 72 nd term of this A.P. is 491. Find:	
(a) d	25. An A.P. with $a = 13$ has $S_{30} = 3435$. Find the value of d .
(b) a	
(c) T ₂₃	

23.