ASSIGNMENT 13: GROWLAR FUNCTIONS I + I

- 1 AB is a chord of length six centimetres in a circle (centre O) of radius five centimetres. The point X lies on the minor arc AB. Using your own sketch, find:
 - (a) the size of angle AOB, in degrees and minutes
 - (b) the area of ΔAOB
 - (c) the area of the minor sector AOB
 - (d) the length of the minor arc AXB
 - (e) the area of the major segment formed by the chord AB.
- 2 Express, in terms of π , the size of each interior angle of a regular octagon.
- 3 (a) What is the period and amplitude of the curve $y = 2\sin\frac{x}{3}$?
 - (b) Show, by substitution, that the point $\left(\frac{\pi}{2},1\right)$ lies on the graphs of:

$$y = 2\sin\frac{x}{3}$$

$$y = \frac{2x}{\pi}$$

(c) Using the domain $0 \le x \le \pi$ sketch the two functions $y = 2\sin\frac{x}{3}$ and $y = \frac{2x}{\pi}$ on the same axes. Find the area enclosed by these curves.

- 4 Differentiate $e^{\sin x}$ with respect to x and hence find $\int_0^{\pi} \cos x e^{\sin x} dx.$
- 5 The curve $y = \tan x$ for $0 \le x \le \frac{\pi}{3}$ is rotated about the x-axis. Find the volume of the solid of revolution thus generated.

6

An ornamental arch window 2 metres wide and 2 metres high is to be made in the shape of an arc of either a cosine curve or a parabola, as illustrated on axes above.

(a) If the arch is made in the shape of the curve:

$$y=2\cos\frac{\pi}{2}x,$$

find the area of the window. (Your answer may be left in terms of π .)

(b) If the arch is made in the shape of an arc of a parabola, find the equation of the parabola and the area of the window.

7 Evaluate
$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

8 Find the slope of the tangent to $y = \frac{1}{\sin x + \cos x}$ at x = 0.

ASSIGNMENT 13

(1) (a)
$$\mathcal{B}^{2}$$
 $\mathcal{D}B = 3 \text{ cm}$

$$\therefore \sin \frac{\theta}{2} = \frac{3}{5}$$

$$\frac{\theta}{2} = 36^{\circ} 52^{\prime}$$

$$\therefore \theta = 73^{\circ} 44^{\prime} = \angle AOB$$

(6) Area of
$$\triangle AOB = \frac{1}{2} \times 5 \times 5 \sin 73^{\circ} 44^{\circ}$$

= 12 cm²

(c) Area of minor sector AOB =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 5^2 \times \frac{73^244^2}{180^6} \times \pi^6$
= $\frac{16 \cdot 1}{16} \cdot 10^{-2}$ (to 1d.p.)

(e) Area of major sector

= Area of circle - Area of minor segment

=
$$\pi (5^4) - 16.086 - 12$$

= $50.5 \text{ cm}^4 (40 \text{ ld.p.})$

: Each interior angle
$$= \frac{12\pi}{8} = \frac{3\pi}{2}$$

(3) (a) Period =
$$T = \frac{2\pi}{n} : \frac{2\pi}{\frac{2\pi}{3}} = \frac{6\pi}{3}$$
 Seconds.

Amplitude = 2

(b) (i) Sub.
$$x = \frac{\pi}{2}$$
 into $y = 2\sin\frac{\pi}{6}$

$$= 2x\frac{1}{2} = 1 \quad \text{i. point } (\frac{\pi}{2}, 1) \text{ lies on graph}$$
(ii) Sub. $x = \frac{\pi}{2}$ into $y = \frac{2x}{\pi} = \frac{2\pi}{\pi \times 2} = 1$...

Assign 13

2 y = 2 sin
$$\frac{\pi}{3}$$

(3) (c)

 $y = \frac{2\pi}{\pi}$

(4)
$$y = e^{\sin x}$$
 $\Rightarrow \frac{dy}{dx} = \frac{\cos x e^{\sin x}}{e^{\sin x}}$

If $\frac{d}{dx} \left[e^{\sin x} \right] = \cos x e^{\sin x}$

then $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} dx = \left[e^{\sin x} \right]_{0}^{\frac{\pi}{2}}$
 $= e^{t} - e^{0}$
 $= e - t$

(5) Volume required
$$=\pi \int y^2 dx$$

$$=\pi \int_0^{\frac{\pi}{3}} tan^2 x dx = \pi \int_0^{\frac{\pi}{3}} sec^2 x - 1 dx$$

$$=\pi \left[tan x - x \right]_0^{\frac{\pi}{3}}$$

$$=\pi \left[\left(tan \frac{\pi}{3} - \frac{\pi}{3} \right) - 0 \right]$$

$$=\pi \left(\sqrt{3} - \frac{\pi}{3} \right)$$

$$=\frac{\pi}{3} \left(3\sqrt{3} - \pi \right) \text{ cs. anic}$$
(6) (a) Area = $\int_0^1 2 \cos \frac{\pi}{2} x dx$

$$= 2 \int_0^1 2 \cos \frac{\pi}{2} x dx$$

$$= 4 \left[\frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} \right]_0^1$$

 $=\frac{8}{7}\sin\frac{\pi}{2}$

= B sq. units.

$$y = -2(x^2-1) = -2x^2+2$$

$$\therefore \text{ area required } = \int_{-1}^{1} 2 - 2x^{2} dx$$

$$=2\int_0^1 2(1-\chi^2)\,dx$$

$$= 4 \left[\times - \frac{x^3}{3} \right]_{\alpha}^{1}$$

$$= 4 \times \frac{2}{3} = \frac{8}{3} = 2\frac{2}{3}$$
 sq. units

(7)
$$\lim_{X\to 0} \frac{5}{x} \frac{\sin 5x}{5x} = 5 \lim_{X\to 0} \frac{\sin 5x}{5x}$$

(8)
$$y = \frac{1}{(\sin x + \cos x)} = (\sin x + \cos x)^{-1}$$

$$\frac{dy}{dx} = -i\left(\sin x + \cos x\right) \times (\cos x - \sin x)$$

$$= \frac{-1(\cos x - \sin x)}{(\sin x + \cos x)^2}$$

$$\frac{dy}{dx} = \frac{-1(1-0)}{(0+1)^2}$$