

Waverley College

MATHEMATICS

Year 10, Criteria Test II

Monday August 1st, Term III, 2011 Weighting: 50%

Time Allowed: 45 minutes

-		6		

Class:10MA1 / 10MA2 / (10MA3)/ 10MA4 / 10MA5/ 10MA6

INSTRUCTIONS:

1. Attempt all questions.

Student Name:

- 2. Calculators may be used.
- 3. Write in blue or black pen only, or pencil for diagrams only.
- 4. Show all necessary working, marks may be deducted for careless or badly arranged work.

:	/32
`	/22
,	/54

Section 1: Coordinate Geometry

(32 marks)

Question 1

a) Find the midpoint of the following points: A(4,9) and B(-2,-4).

(2 marks)

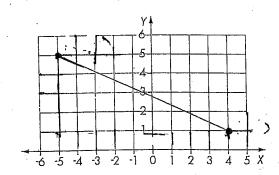
b) M (5,-2) is the midpoint of A(-1,10) and B. Find the coordinates of B

(2 marks)

Question 2

a) Which point is closer to the origin, O(0, 0); the point A(12, 2) or B(6, 10)?

Show working for full marks.


(2 marks)

b) How much closer is this point?

(1 małk)

Question 3

a) Find the gradient of the following line.

1	5)
U	(ם	J

The gradient of the line segment joining (a,2) and (1,5) is 3. What is the value of a?

(2 marks)

Question 4

Give the y-intercept and the gradient for the line y = 10 - 4x

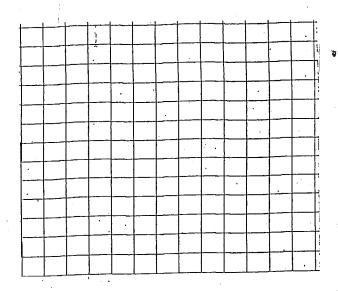
(2 marks)

y-intercept = ____

gradient =

Question 5

Concerning the line, 3x + 2y = 4


i) What is the gradient?

(1 mark)

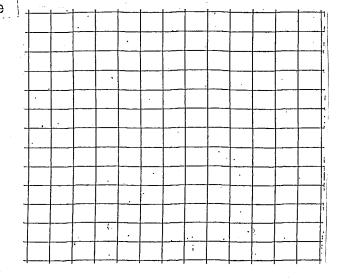
ii) What is the y-intercept?

(1 mark)

iii) Graph this line.

Determine the x- and y- intercepts for the line, 3x + y - 6 = 0 and hence graph the line.

i) x-intercept:


(1 mark)

ii) y-intercept:

(1 mark)

iii) Graph the line

-(2 marks)

Question 7

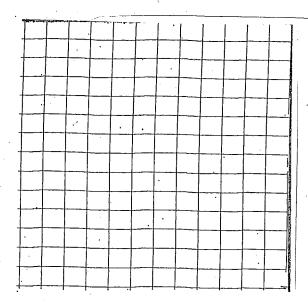
Find the equation of the line:

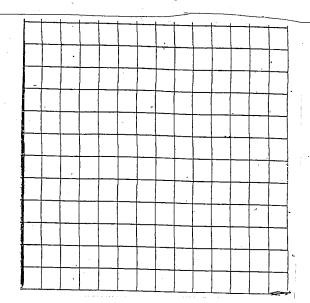
a) with gradient 2 and y-intercept

(2 marks)

b) passing through (4,1) with a gradient of 3

(2 marks)


c) passing through (2,4) and (1,5). Give your answer in general form.


(3 marks)

Sketch the graph of the following regions.

(a)
$$x < 2$$

(b)
$$y \le x + 3$$

Section 2: Trigonometry

(22 marks)

Formulae

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

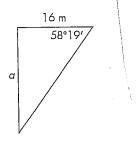
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$A = \frac{1}{2}ab\sin C$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

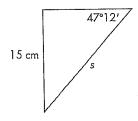
Question 1

Use your calculator to find sin 5°22' correct to four decimal places.

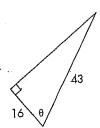

(1 mark)

Question 2

Find the value of the pronumeral in each of the following, correct to one decimal place.


(a)

(2 marks)


(b)

(2 marks)

Question 3

Find the value of angle θ , to the nearest minute.

A car travels 920 m south and then a further 620 m west. To the nearest degree, what is the bearing of the car from its starting position? (2 marks)

Question 5

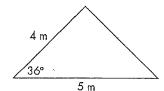
Which of the following statements is untrue?

Circle the correct answer.

(1 mark)

A sin
$$30^{\circ} = \frac{1}{2}$$

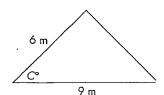
B tan
$$60^{\circ} = \sqrt{3}$$


C sin
$$0^{\circ} = 0$$

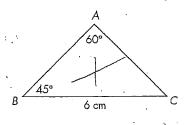
$$\sqrt{60}\cos 45^{\circ} = \frac{1}{\sqrt{3}}$$

Question 6

(2 marks)

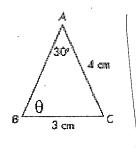

Using the Area formula, calculate the area of the triangle below.

Question 7


If the area of the following triangle is 20 m², what is angle/C in degrees and minutes?

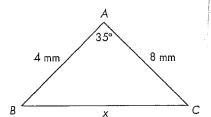
(2 marks)

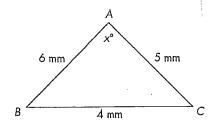
(2 marks)


Using the Sine rule, find the length of AC to two decimal places.

Question 9

Using the Sine rule, find the value of θ , to the **nearest minute**.


(2 marks)


Question 10

(a) Use the Cosine Rule to find x, correct to two decimal places.

(2 marks)

(b) Use the Cosine Rule to find the value of x to the nearest minute.

Section 1: Coordinate Geometry

(32 marks)

Question 1

a) Find the midpoint of the following points: A(4,9) and B(-2,-4).

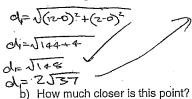
The mapping of the following points.
$$A(4,9)$$
 and $B(-2,-4)$.

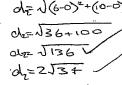
$$A(4,9) = A(4,9) = A$$

(2 marks)

b) M (5,-2) is the midpoint of A(-1,10) and B. Find the coordinates of B

$$\left(-\frac{1+x_{2}}{2}, \frac{10+y_{2}}{2}\right) = \left(5, -2\right)$$
 $\frac{-1+x_{2}}{2} = 5$
 $-1+x_{2} = 10$
 $x_{2} = 11$

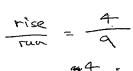

$$S_{2} = 11$$
 and $y_{2} = -14$
 $S_{3} = 11$


Question 2

a) Which point is closer to the origin, O(0, 0); the point A(12, 2) or B(6, 10)?

Show working for full marks.

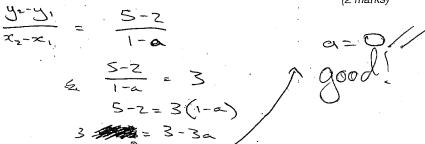
(2 marks)



$$d_{\overline{z}}\sqrt{(6-0)^2+(0-0)^2}$$
 $OA = 2\sqrt{37} \approx 12.17$
 $OA = 2\sqrt{36} \approx 11.66$
 $OB = 2\sqrt{34} \approx 11.66$

Question 3

a) Find the gradient of the following line.



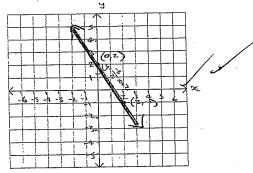
$$\frac{S-1}{-S-4}$$

$$=\frac{4}{-\alpha}$$

(b) The gradient of the line segment joining (a,2) and (1,5) is 3. What is the value of a? (2 marks)

Question 4

Give the y-intercept and the gradient for the line y = 10 - 4x

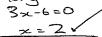

Question 5

Concerning the line, 3x + 2y = 4i) What is the gradient?

ii) What is the y-intercept?

(1 mark)

(2 marks) Graph this line.



(2 marks)

(1 mark)

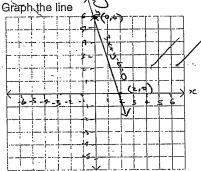
Determine the x- and y- intercepts for the line, 3x + y - 6 = 0 and hence graph the line.

x-intercept:

(1 mark)

y-intercept:

(1 mark)


Graph the line

(2 marks)

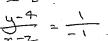
(2 marks)

(2 marks)

(3 marks)

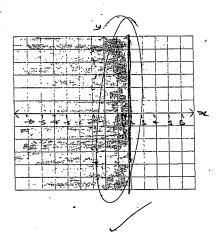
Question 7

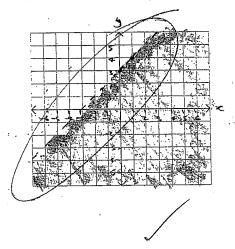
Find the equation of the line:


a) with gradient 2 and y-intercept

b) passing through (4,1) with a gradient of 3

c) passing through (2,4) and (1,5). Give your answer in general form.


$$\frac{x-x_1}{x^2-x_2} = \frac{x_2-x_1}{x^2-x_2}$$


Question 8

Sketch the graph of the following regions.

(a)
$$x < 2$$

(b)
$$y \le x + 3$$

(4 marks)

Section 2: Trigonometry

(22 marks)

Formulae

Area of a triangle

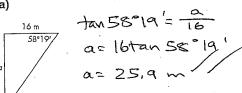
$$c\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Question 1

Use your calculator to find sin 5°22' correct to four decimal places.

(1 mark)


(2 marks)

(2 marks)

Question 2

Find the value of the pronumeral in each of the following, correct to one decimal place.

(a)

(b)

$$S = \frac{15}{\sin 47^{\circ}12^{\circ}}$$

$$S = \frac{15}{\sin 47^{\circ}12^{\circ}}$$

$$S = \frac{15}{\sin 47^{\circ}12^{\circ}}$$

Question 3

Find the value of angle θ , to the nearest minute.

(2 marks)

Question 4

A car travels 920 m south and then a further 620 m west. To the nearest degree, what is the bearing of the car from its starting position? 41801

tan 0 = 620 9= tau (620)

" The bearing is 214°

Question 5

Which of the following statements is untrue?

Circle the correct answer.

(1 mark)

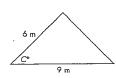
$$\sqrt{A} \sin 30^{\circ} = \frac{1}{2}$$

B
$$\tan 60^{\circ} = \sqrt{3}$$

$$\sqrt{\mathbf{C}} \sin 0^{\circ} = 0$$

$$\cos 45^\circ = \frac{1}{\sqrt{3}}$$

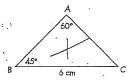
Question 6


(2 marks)

 $A = \frac{1}{2} \times 4 \times 5 \times 6 = 36^{\circ}$ $A = 5.88 \text{ m}^{3}$

Question 7

If the area of the following triangle is 20 m², what is angle/C in degrees and minutes?



$$\frac{40}{s+} = \cos C$$

$$C = \cos \frac{1}{s+1} \left(\frac{40}{s+1}\right)$$

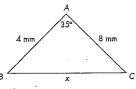
Using the Sine rule, find the length of AC to two decimal places.

Question 9

Using the Sine rule, find the value of θ , to the nearest minute.

(2 marks)

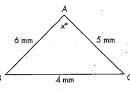
(2 marks)



$$\frac{\sin \theta}{4} = \frac{\sin 3\theta}{3}$$

Question 10

(a) Use the Cosine Rule to find x, correct to two decimal places.


(2 marks)

$$x^2 = 27.57$$

cost = 62+c2-a2

(b) Use the Cosine Rule to find the value of x to the nearest minute.

$$\cos A = \frac{6^2 + 5^2 - 4^2}{3265}$$

(2 marks)

END OF EXAMINATION