YEAR 11 EXTENSION 1 TRIGONOMETRY TEST (CRANBROOK)

June 2003

HRK

TO BE COLLECTED IN 3 SECTIONS

START A NEW PAGE

PART A Marked by HRK

- 1) If tan J is negative and $cosec J = \frac{5}{3}$, find the value of sec J.
- 2) Find the value of θ if $\csc 42 = \sec(78 3\theta)^{\circ}$
- 3) i. Show that $\frac{1+\cos 2A}{\sin 2A} = \cot A$.
 - ii. Hence find the exact value of *cot*°15.

START A NEW PAGE

PART B Marked by DGS

- 1) Find all angles θ with $0 \le \theta \le 360^{\circ}$ for which $\sin 2\theta = \sin \theta$.
- 2) <u>i.</u> Express $\sin 4t + \sqrt{3} \cos 4t$ in the form $R \sin(4t + \alpha)$, where α is in degrees.
 - ii. Hence, or otherwise, find the general solution in exact form of the equation $\sin 4t + \sqrt{3}\cos 4t = 0.$
- A yacht sailing due west, turns at A to avoid a treacherous reef and sails on a course bearing $212\,^{\circ}20'$ for $2\cdot 8$ nautical miles to B. It then turns and sails on a course bearing $330\,^{\circ}35'$ to a point C, due west of A.
 - Find to the nearest tenth of a nautical mile, the distance BC.

START A NEW PAGE

PART C Marked by CJL

1)

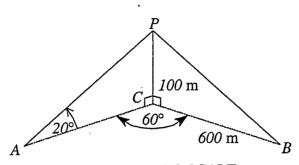


FIGURE NOT TO SCALE

Two yachts A and B subtend an angle of 60° at the base C of a cliff. From yacht A the angle of elevation of the point P, 100 metres vertically above C, is 20° . Yacht B is 600 metres from C.

- i. Calculate the length AC.
 ii. Calculate the distance between the two yachts.
- 2)

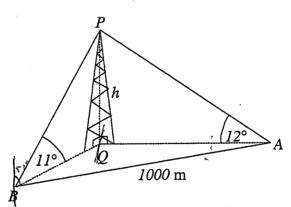


FIGURE NOT TO SCALE

The angle of elevation of a tower PQ of height h metres at a point A due east of it is 12° . From another point B, the bearing of the tower is 051° T and the angle of elevation is 11° . The points A and B are 1000 metres apart and on the same level as the base Q of the tower.

- i. Show that $\angle AQB = 141^{\circ}$.
- ii. Consider the triangle APQ and show that $AQ = h \tan 78^\circ$
- iii. Find a similar expression for BQ.
- iv. Use the cosine rule in the triangle AQB to calculate h to the nearest metre.

YRII EXT I TRIGONOMETRY TEST (\$53% 1=Omariz JUNE 2003 GARTB PART A 1) tan 5 < 0 ? () / 3) cosec 5 = + 5 : 2nd Q : Sec is HO $\frac{1}{4} \sin 2\theta - \sin \theta = 0$ 2 sun 0 600 0 - sun 0 = 0 3 5 By Pythag. / x=4 sm0 (2000-1)=0 $\therefore \sec J = \frac{5}{4}$ 2) Weec 42° = sec (78-30)° 2 CO-RAT (05 $42 + 78 - 30 = 90^{\circ}$ 2(1) R = 12+532 tan x=53 $3 = 2 / \alpha = 60$ 30 = 30° ∴0=10° ✓ ... R sin(4t+d) = 2 sin(4t+60) 3)(i) 1 + Cos 2A LHS = sun 2 A (ii) $2 \sin(4t + 60^\circ) = 0$ $=\frac{\chi+26\sigma^2O\chi}{2\sin \cos \cos O}$ (3) $sin(4t + 60^\circ) = 0$ 4t+60° = 180n $\frac{4t}{4} = \frac{180n - 60}{4}$ = <u>coso</u> - colo=RHS :. t = 45n-15 (neJ (ii) $60 \times 15^{\circ} = 1 + 60 \times 30^{\circ}$ 30° 30° OR OTHERWISE: Since RHS is zero SIMPLY use tan !!! $6 \quad \sin 4t = -53$: $t = -\sqrt{3}$ 4t = 180n-60 t = 457-15AS BEFORE =2.7 nm/

PARTC 2 (an 20 = 100) c = 100 = 274.7m (1 dp) (ii)(3) - Zx 274.7x oc = 5-20m (neorest m) V (5-20.2308045!) BIRD'S EYE VIEW! LAQB=90°. (ii) In DAPP, LAPP=78° (Loungs)/ 3 En 78° = AP : AP = h tan 78° (iii) In ABQP, Tan 79°= BQ · BQ - h Can 79 (iv) 1000 = h2 tan 78° + h2 tan 79 - 2xh tan 78° h tan 79° Ces 141° 10002 ton278+ ton279°-2 ton78 ton79°65/41°:h=108m/