

Student Number

Centre Number

2015

Preliminary Examination
Assessment Task 5

Mathematics Extension 1

Reading time

5 minutes

Writing time

100 minutes

Total Marks

51

Task weighting

50%

General Instructions

- · Write using blue or black pen
- A Board-approved calculator may be used
- All relevant working should be shown for each question

Additional Materials Needed

- Multiple Choice Answer Sheet
- 3 writing booklets

Structure & Suggested Time Spent

- Section I (Multiple Choice) 5 Marks
 Attempt all questions
 Allow about 10 minutes
- Section II (Extended Response) 46 Marks
 Attempt all questions
 Start a new booklet for each question
 Allow about 90 minutes

This paper must not be removed from the examination room

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Section I

5 marks

Attempt Questions 1 - 5

Allow about 10 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5 Marked by GHW

- 1 What is the solution to the equation |x-2| = 2x + 1?
 - (A) x = -3
 - (B) $x = -\frac{1}{3}$
 - (C) $x = \frac{1}{2}$
 - (D) x = 3
- 2 What are the coordinates of the point that divides the interval joining the points A(2,-4) and B(3,-3) externally in the ratio 2:3?
 - (A) (0,-6)
 - (B) (1,3.4)
 - (C) (2.4,-3.6)
 - (D) (5,-17)
- 3 Given $t = \tan \frac{\theta}{2}$, $\frac{\sin \theta}{\cos \theta + 2}$ can be expressed as:
 - $(A) \quad \frac{2t}{1+t^2}$
 - (B) $\frac{2t}{3+t^2}$
 - (C) $\frac{2t}{1-t^2}$
 - (D) $\tan \theta + 2$
- 4 A parabola has the parametric equations x = 6t and $y = 3t^2$. What is the gradient of the tangent to the parabola at t = 3?
 - (A) m = 3
 - (B) m=3t
 - (C) $m = \frac{3}{2}$
 - (D) $m = \frac{-3}{2}$

5 Line SP is a tangent to the circle at P and SQ is a secant meeting the circle at Q and R.

Given that SP = 4, QR = 6 and SR = x, what is the value of x?

- (A) -8
- (B) 2
- (C) 3
- (D) 4

End of Section I

3

Section II

46 marks Attempt Questions 6 – 8 Allow about 90 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Qu	estion 6 (16 marks) START NEW BOOKLET	Mark
(a)	Marked by JJA The point P divides the interval AB joining $A(-6,2)$ and $B(2,10)$ internally in the ratio 3:5. What are the coordinates of P ?	2
. (b)	Solve the inequality $\frac{2x+3}{x-2} \le 1$	3
(c)	The polynomial $P(x) = x^3 - 6x^2 + 4x + 2$ has roots α , β and γ .	
	(i) Find the value of $\alpha + \beta + \gamma$.	1
	(ii) Find the value of $\alpha\beta\gamma$.	1
	(iii) Find the value of $(\alpha-3)(\beta-3)(\gamma-3)$.	1
(d)	Find the acute angle between the lines $y = 2x - 1$ and $x - 3y + 3 = 0$. Answer to the nearest degree.	2

Question 6 continues on next page

(e) Solve the following equation for θ for $0^{\circ} \le \theta \le 360^{\circ}$, by letting $t = \tan \frac{\theta}{2}$.

$$\sin\theta + \cos\theta = -1$$

(f) \A mountain AB is 1200 metres above sea level. Daniel is on a boat with a bearing of 140° to the mountain and angle of elevation to the top of the mountain of 24°. Chloe is on a boat with a bearing of 110° to the mountain and angle of elevation to the top of the mountain of 18°.

What is the distance between Daniel and Chloe? Answer to the nearest metre.

End of Question 6

Question 7 (15 marks) START NEW BOOKLET Marked by HRK

Marks

- (a) A polynomial $P(x) = x^3 + ax^2 + bx + 6$ is divisible by both (x+3) and (x+1)
 - (i) Find the values of a and b.

- 2
- (ii) Write the polynomial P(x) as a product of its factors.
- 2
- (b) (i) Show that $\frac{1+\cos 2x}{\sin 2x} = \cot x$
 - (ii) Hence show the exact value of cot 15° is $2+\sqrt{3}$.
- (c) AB is a diameter and BC is a chord of a circle. A tangent at E meets BC produced to D such that DE is perpendicular to BD.
 By letting ∠CBE = α, prove that BE bisects ∠ABC.

Question 7 continues on next page.

(d) $P(2ap, ap^2)$ is a variable point on the parabola $x^2 = 4ay$ with focus S(0, a). M is the midpoint of SP.

- (i) Show that the tangent to the parabola at P has equation $y = px ap^2$.
- (ii) Where does the tangent to the parabola at P cut the x-axis?
- (iii) Find M, the midpoint of the interval SP.
- (iv) Find the cartesian equation of the locus of M.

End of Question 7

Question 8 (15 marks)	START NEW BOOKLET		Marks
Marked by R	DS	•	

- (a) (i) Express $2\sin x \cos x$ in the form $A\sin(x-\alpha)$ for $0^* \le \alpha \le 90^*$. Leave α to the nearest minute.
 - (ii) Hence solve the equation $2\sin x \cos x = 1$ for $0^{\circ} \le x \le 360^{\circ}$.

(b) In ΔABC, AD and BE are perpendicular to CB and AC respectively. The lines AD and BE intersect at F and CF is produced to meet AB at G.

- (i) Why is ABDE a cyclic quadrilateral? Give a reason.
- (ii) Why is EFDC a cyclic quadrilateral? Give a reason.
- (iii) Prove that $\angle FCD = \angle DAB$.
- (c) The parabolas $y = x^2$ and $y = (x-4)^2$ intersect at the point A.
 - (i) Find the coordinates of A.
 - (ii) Find the size of the obtuse angle between the tangents to curves at A? Answer to the nearest minute.
- (d) Consider the equation: $y = \frac{x}{2x^2 x 15}$
 - (i) Find the coordinates of the *y-intercept*.
 - (ii) Find the equation of any vertical asymptotes.
 - (iii) Find the $\lim_{x\to\infty}$
 - (iv) Hence or otherwise, sketch the curve $y = \frac{x}{2x^2 x 15} + 1$

Mulple Choice

$$|x-2| = 2n+1$$

$$x-2 = 2n+1$$

$$x = -3$$

$$|-3-2| = 2(-3)+1$$

$$5 \neq -5 = 1 \text{ not soh.}$$

$$-x+2 = 2x+1$$

$$3x = 1$$

$$x = \frac{1}{3}$$

$$|\frac{1}{3}-2| = 2(\frac{1}{3})+1$$

$$\frac{5}{3} = \frac{1}{3} = \frac{5}{3} = \frac{5}{3} = \frac{5}{3}$$

3.
$$\frac{8 \text{ in } \Theta}{\cos \Theta + 2} = \frac{2t}{1+t^2}$$

$$= \frac{2t}{1+t^2} + 2$$

$$= \frac{2t}{1-t^2 + 2t^2t^2}$$

4.
$$x = 6t$$
 $y = 3t^{2}$

$$t = \frac{x}{6}$$

$$y = 3(\frac{x}{6})^{2}$$

$$= \frac{3x^{2}}{3612}$$

$$\frac{3y}{6x} = \frac{2x}{126}$$

$$= \frac{x}{6}$$

$$0x = \frac{x}{6}$$

$$0 = \frac{x}{6}$$

5.
$$x(x+6) = 16$$

 $x^2+6x = 16$
 $x^2+6x-16 = 0$.
 $(x+8)(x-2) = 0$.
as $x>0$
 $x=2$

Section 2

a)
$$(-6,2)$$
 (2,10)
3:5
 $x = 5x - 6 + 3x 2$ $y = 5x + 3x 10$
 $P(-3,5)$

need to learn correct formula.

b)
$$\frac{2x+3}{x-2} \le 1$$
 $x \ne 2$ $(x-2)^2 \checkmark$

Question 5

$$(x-2)(2x+3) - (x-2)^{2} 60$$

 $(x-2)(2x+3 - (x-2)) 60$ = many left and bracket so had wrong signs.

some drew incorrect pradrole for their info so got inequality whomp

c) i)
$$\alpha + \beta + \delta = -\frac{b}{a} = 6$$
 | Held to learn correct formule

iii)
$$(\alpha - 3)(\beta - 3)(\delta - 3) = \alpha \delta \beta - 3 \alpha \beta - 3 \alpha \delta - 3 \beta \delta + 9 \delta + 9 \alpha + 9 \beta - 27$$

= $\alpha \beta \delta - 3(\delta \alpha + \beta \delta + \alpha \beta) + 9(\kappa + \beta + \delta) - 27$
many couldness = $\alpha 2 \alpha \alpha - 2 - 3 \alpha \beta + 9 \alpha \delta - 27$
the algebra. = 13

d)
$$M_1 = 2$$
 $M_2 = \frac{1}{3}$
 $12 - \frac{1}{1}$

e)
$$sui \Theta + cos \Theta = -1$$

 $\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = -1$
 $2t + 1 - t^2 = -1 - t^2$
 $2t = -2$
 $t = -1$

$$tan = -1$$
 $0^{\circ} \le \frac{1}{2} \le 180^{\circ}$ $\frac{1}{2} = 135^{\circ}$ $\frac{1}{2} = 135^{\circ}$ $\frac{1}{2} = 135^{\circ}$

ned to adjust the domain

$$DC' = (1200 \tanh 6)^2 + (1200 \tan 72)^2 - 2 \times (1200 \tan 16)$$

 $(1200 \tan 72)^2 \times (0.00 \tan 16)$

tha mark is for 30°.

question asks to nearest matre. Students need to read requirements - not penaluia!

(a)
$$f(x) = 3i^{2} + ax^{2} + bx + 6$$

$$f(x) = -27 + 9a - 3b + 6 = 0$$

$$9a - 3b = 21$$

$$3a - b = 7 \text{ D}$$

$$-1 + a - b + 6 = 0$$

$$2a = \frac{12}{3}$$

$$a = \frac{12}{6}$$

$$b = 11$$

$$-(x + 3)(x^{2} + 3x + 2)$$

$$-(x + 3)(x + 1)(x + 2)$$

$$= (x + 3)(x + 2)(x + 2)$$

$$= (x +$$

(i)
$$y = \frac{x^2}{4a}$$

(j) $y = \frac{x^2}{4a}$

(jii) $y = \frac{2x}{4a}$
 $y = ap^2$
 $y = ap^2$

a) i) $2\sin x - \cos x$ Asin $(x-\alpha)$ $A \sin(\chi - \alpha) = A \sin\chi \cos\alpha - A \sin\alpha \cos\chi$ $-. \quad A\cos\alpha = \frac{1}{3}2$ Asin x = 1 tand = 2 $\alpha = + \alpha^{-1} \left(\frac{1}{2} \right)$ = 26°34' . 2 2sinx - cosx = 1 $Sin\left(\chi-\tan^{-1}\left(\frac{1}{2}\right)\right)=\frac{1}{\sqrt{5}}$ $\gamma(-+\tau m^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \neq (90-\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)$ x = 53°8' \$ 180° 2

avestion 8

c)i)
$$y = x^{2}$$
 $y = (x-4)^{2}$
 $x^{2} = x^{2} - 8x + 16$
 $8(2-x) = 0$
 $x = 2$

A $(2,4)$

ii) $y = x^{2}$
 $dy = (x-4)^{2}$
 $dy = 2x$
 $dy = 2(x-4)^{2}$
 $dy = 2(x-4)^{2}$

i)
$$y = \frac{1}{2x^2 - x - 15}$$

 $x = 0$, $y = 0$
 $y = \frac{1}{(2x + 5)(x - 3)}$
ii) $y = \frac{x}{(2x + 5)(x - 3)}$
 $x = \frac{x}{(2x + 5)(x - 3)}$

