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Section 1

10 Marks
Allow about 16 minufes for this section

Use the multiple choice answer sheet for Questions 1 to 10,

Question 1

Which of the following is equivalent to (2—2;’)3 7

A) 16+16i

(B) —16-16i

© 6+6i

6] —6-6i
Question 2

What is —2+/2 —2+/27 in modulus argument form?

(A) 4[cos%+sin%}
B) 4| cos— +sm—]

©) 4(cas—wsm-]

™ 4[cos——sm —J

Question 3

What is the equation of an ellipse with the origin as the centre, a focus at (0,3) and a

corresponding directrix at y =57

(A) %2+;’—5=1

®) §+y6—2=1

(© %+\}%=1

D) —'jf:s+yT;=1
Question 4

The complex numbers 0, z and z, where Arg(z) < Arg(z,), are three vertices of a

parallelogram where the 4 point is the complex number z, +z, . All the vertices lie in the

first quadrant.

Which statement Is true if the parallelogram is a rhombus?

(A) 2,=iz, ot iz, =2,
®  |atzl=l-z
©  faral=ll=l
(D) 4rg(z,+2,)=Arg|i{z~2,)]




Question 5

. 2
Which of the following is the factorised form of the p6lynomial P(z)= 2t =222 -

P(z) =(z-1-4)(z+1—i

Question 6

Let the polynomial P(x) =3%> —2x* +5x~7 have roots ¢, § and y.

Which of the following polynamials has roots (1-a), (1-8) and (1-7)?

A P(x) =32 +7x* —10x -1
®) P(x)=3x" —7x* +10x -1
< P(x)=-3x"~7x" ~10x -1
M) . PE)=3x+7c +10x-1

Question 7

The following is a sketch in the Argand Diagram. The point 4 is the complex number

—r+im.

Which of the following could represent the region shaded?

(a)
8)
©

(€0}

—w L Arg(z)<nm
Arg(z)zm Arg(2)<—rx
|z| Slz +;r—i}r[

|z|2|z+:r—i:r]




uesfion 10
Question 8 Ques

Let P(x)=x'—2p<* +3gx~m haveroots e, 8, y and o, If &+ eyt ral =1 whatis A complex number, z, lies on a circle of radins 0 with centre at the origin in the Argand

the value of &' + #* +y* +o*? . . . . . 3
diagram. w lies on another circle with radius 3 and centre at the origin. If Im(z) <0,

(A) 1 ,
®) 2p—3g+m Re(z)#0 and Arg (EJ = g then which statement is TRUE in regards fo the complex
F4 .

(© 2p+am number zw?7

) 2ptm (A) zw lies on the unit circle.
Question & B) If Arg(z)+m< % then Re(zw) < 0.
What is the equation of the normal at the point P(asecd,btand) to the hyperbola

(©) If Arg(z)+ 7 <§ then Im(zw) > 0.
Ei_y_l =17
a b ()] zw will be in the first quadrant.
ax by 2, 52
A - =q +b
@ socd tan@
(B) i.;___ll = az +52
secd tanf
’ END OF SECTION I
© secdx tanfy -1
a b
) secﬂx_'_tanﬂy:I
a




Section 11

45 Marks

AHow about 74 minutes for this section

Answer questions 11 to 13 jn separate booklets,

Question 11

Begin a new booklet 15 Marks

a) Let ]z —1- i| <1 and Re(z)>1 define aregion in the Argand plane.

i. Sketch the region showing points of intersection. 2

ii. Find the value of z in the region where Arg(z) is a maximum. 1

2 2
b)  Let  be a point on the ellipse x—+§—2 =1 where a>b. Let Sand §° be the foci of the

ellipse.

az

Prove that PS+ PS'=2a

N

NOT TO SCALE

c)

4

: 2 AP -
The points Af (2»:,;;] and N (211, ;J lie on opposite branches of the rectangular

hyperbola xy=4.
i. Find the equation of the chord MN 2
i, MN goes through the y axis at 1. Write the coordinates of the point N using the

parameter m. 2

Sketch |z -3+ i] =Re(z)—1 showing all intercepts. 2

The polynomial P(z) =3z* +(14—6i)z° — (281 +8)2> +(10i-14)z+5 has a double root

aft z=1i,

~ Solve P(z)=0 over the complex field. ‘ 4




N . 2 2
Question 12 Begin a new booklet 15 Marles d)  Thepoint P(x,,y,) lies on the ellipse x—2+§—1= 1. The normal at the point P cuts the
: a

x- and y-axis at X and ¥. The point M is the y intercept of the line drawn through P that
a) Let P(x) bea polynomial of degree » with a double roofat x=«.
is parallel to the x-axis.
i. Showthat P'(a}=0 1
if. Hence find the values of @ and b given the polynomial ((x)=ax" +bx+5i hasa

double root at x =4i 7 2

b}  Let P(x)==x’—3px*+q have roois have roois a, § and 7.

i, Form a polynomial whose roots are and

|-

1
B

Q=

ii. Hence or otherwise find a polynomial whese roots are I-l-_a, Hﬁ and 1+_7' 2
o

B
v NOT TO SCALE
ce /
¢)  Sketch T =1 showing all intercepts, asymptotes, foci and directrices. 2

i. Show that the equation of the normal at P is 2

2 2

ax by _ o p

x.P y.P

ii. Find the ratio of the areas of AMPY and AQXY . 2
11

10




¢) Theline x+¢*y—2cq =1 is a tangent to the rectangular hyperbola xy=c* at the point

Q(cq, EJ . It cuts the asymptotes at 4 and B.
q

Show that the distance AB is equal to twice the distance of O from the origin. 2

12

Question 13 Begin a new booklet 15 Marks

a)  The point P[cp, -C—J lies on the rectangular hyperbola xy=¢? in the first quadrant,
P

B N

N

NOT TO SCALE

i. Show that the equation of the normal at Pis p’x— py+c—gp' =0 1

ii. The point ¥ is chosen so that the y intercept of the normal is the midpoint of P}V,

Find the coordinates of ¥, 2
iii. Hence show that the locus of J¥ as P varies is ¢*xy =2x* —c* and explain why the
domain of that locus is x <0. 2
13




b) Let z2'41=0 haveroots «, A, y, & and & where & has the smallest positive

argument.
i. Find the values of all the roots in modulus argument form and identify the
conjugate pairs. 3
ii. By first expressing each root as a power of o find the monic Quadratic equation

whose roots are ¢ — o and o' —a*, 3

2 2
¢) A point P(acosd,bsin#) lies on the ellipse x—1+-'ZT =1 where a>b. The tangent
a

through P meets the {angents through x =+a at Afand M’ respectively.

-2 nY ¥ -
M’ \_ P
M
’\
\ x

xc036+ys;n&‘=1 1

i. Show that the equation of the tangent at P is given by

ii. Prove that A3f'S'S is a circle with diameter AMAM'. 3

END OF SECTIONIT

END OF EXAM
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