Imber Student Number

CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES

2003
TRIAL HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 2

Morning Session Monday 11 August 2003

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- All necessary working should be shown in every question

Total marks (120)

- Attempt Questions 1 8
- All questions are of equal value

Disclaimer

Every effort has been made to prepare these 'Trial' Higher School Certificate Examinations in accordance with the Board of Studies documents, Principles for Setting HSC Examinations in a Standards-Referenced Framework (BOS Bulletin, Vol 8, No 9, Nov/Dec 1999), and Principles for Developing Marking Guidelines Examinations in a Standards Referenced Framework (BOS Bulletin, Vol 9, No 3, May 2000). No guarantee or warranty is made or implied that the 'Trial' Examination papers mirror in every respect the actual HSC Examination question paper in any or all intentions. The CSSA accepts no liability for any reliance use or purpose related to these 'Trial' question papers. Advice on HSC examination issues is only to be obtained from the NSW Board of Studies.

2604 - 1

Ouestion 1

Begin a new page

(a) The diagram shows the graph of y = f(x) where $f(x) = 1 - 2e^{-x^2}$.

- (i) Find the values of the x intercepts.
- (ii) On separate diagrams sketch the graphs of $y = \{f(x)\}^2$, $y^2 = f(x)$, $y = \cos^{-1} f(x)$, in each case showing the intercepts on the axes and the equations of any asymptotes.
- (b) Consider the function $f(x) = \frac{x}{1 x^2}$.
- (i) Show that the function is increasing for all values of x in its domain.
- (ii) Sketch the graph of y = f(x) showing the intercepts on the axes and the equations of any asymptotes.
- (iii) Find the values of k such that the equation $\frac{x}{1-x^2} = kx$ has three distinct real roots.
- (c) Consider the curve defined by $2x^2 + xy y^2 = 0$. At the point (2,4) on the curve, find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

Question 2

Begin a new page

(a)(i) Find
$$\int \frac{\cos 2x}{\cos^2 x} dx$$
. 2
(ii) Find
$$\int \frac{x^3}{1+x^2} dx$$
. 2

- (b) Use the substitution $u = 1 + e^x$ to find $\int \frac{e^{2x}}{\sqrt{1 + e^x}} dx$.
- (c) Use integration by parts to evaluate $\int_{1}^{e} \frac{\ln x}{x^2} dx$.
- (d)(i) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_{\frac{3\pi}{2}}^{\frac{5\pi}{2}} \frac{1}{2 + \cos x} dx.$
- (ii) Hence use the substitution $u = 4\pi x$ to evaluate $\int_{\frac{2\pi}{2}}^{\frac{5\pi}{2}} \frac{x}{2 + \cos x} dx$.

2

3

3

etion 3	Ragin a naw paga	

Question 3	Begin a new page

- (a) If x is real and $(x+i)^4$ is imaginary, find the possible values of x in surd form.
- (b) z and w are two complex numbers such that |z| = 4, $\arg z = \frac{5\pi}{6}$, |w| = 2, $\arg w = \frac{\pi}{3}$.
 - (i) Express each of z and w in the form a+ib, where a and b are real.
 - (ii) In an Argand diagram the points P and Q represent the complex numbers z and w respectively. Find the distance PQ in simplest exact form.
- (c)(i) Express $\sqrt{3} + i$ in modulus / argument form. (ii) On an Argand diagram sketch the locus of the point P representing the complex number z such that $|z - (\sqrt{3} + i)| = 1$, and find the set of possible values of |z| and |z| = 1.
- (d) In an Argand diagram the points P, Q and R represent the complex numbers z_1 , z_2 and $z_2 + i(z_2 z_1)$ respectively.
- (i) Show that *PQR* is a right-angled triangle.
- (ii) Find in terms of z_1 and z_2 the complex number represented by the point S such that PQRS is a rectangle.

Question 4

Begin a new page

(a)

Marks

3

2

2

1

3

2

2

 $P\left(c\theta,\frac{c}{\theta}\right)$ and $Q\left(-c\theta,-\frac{c}{\theta}\right)$, where $\theta>0$ and c>0, are two points on the rectangular hyperbola $xy=c^2$. The circle with centre P and radius PQ cuts the hyperbola again at points $A\left(c\alpha,\frac{c}{\alpha}\right)$, $B\left(c\beta,\frac{c}{\beta}\right)$ and $C\left(c\gamma,\frac{c}{\gamma}\right)$. CP produced meets AB at D. MCN is tangent to the circle at C.

- (i) Show that the circle cuts the hyperbola at points $(ct, \frac{c}{t})$ where t satisfies the equation $t^4 2t^3\theta 3t^2(\theta^2 + \frac{1}{\theta^2}) \frac{2}{\theta}t + 1 = 0$. Hence deduce that $\alpha \beta \gamma \theta = -1$.
- (ii) Show that $CPD \perp AB$. Hence show that $MCN \parallel AB$.
- (iii) Show that CA = CB.
- (iv) What word best classifies triangle ABC? Justify your answer.

(b)

 $P(a\cos\theta,b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$, is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0. The normal to the ellipse at P has equation $ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$. This normal cuts the x axis at A and the y axis at B.

- (i) Show that $\triangle OAB$ has area $\frac{\left(a^2-b^2\right)^2}{2ab}\sin\theta\cos\theta$.
- (ii) Find the maximum area of $\triangle OAB$ and the coordinates of P when this maximum occurs.

Question 5

Begin a new page

- (a) The equation $x^4 x^3 + 2x^2 2x + 1 = 0$ has roots α , β , γ , δ .
- (i) Show that none of α , β , γ , δ is an integer.
- (ii) Find the monic equation of degree four with roots $\alpha 1$, $\beta 1$, $\gamma 1$, $\delta 1$, and hence find the value of $(\alpha + \beta + \gamma)(\beta + \gamma + \delta)(\gamma + \delta + \alpha)(\delta + \alpha + \beta)$.
- (b) (i) Express the roots of the equation $z^5 + 32 = 0$ in modulus / argument form.
 - (ii) Hence show that $z^4 2z^3 + 4z^2 8z + 16 = \left\{z^2 \left(4\cos\frac{\pi}{5}\right)z + 4\right\}\left\{z^2 \left(4\cos\frac{3\pi}{5}\right)z + 4\right\}$.
- (iii) Hence find the exact values of $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$ in simplest surd form.

Question 6

Begin a new page

(a)

A mould for a circular fish pond is made by rotating the region bounded by the curve $y = 2 - \cos^2 x$ and the x axis between $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$ through one complete revolution about the line x = 1. All measurements are in metres

- (i) Use the method of cylindrical shells to show that the volume of the fish pond is given by $V = \pi \int_{-\pi}^{\frac{\pi}{4}} (1-x) \cos 2x \ dx$.
- (ii) Hence find the capacity of the fish pond correct to the nearest litre.
- (b) A particle of mass m kilograms is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{10}mv^2$ Newtons when the speed of the particle is $v \, \text{ms}^{-1}$. After t seconds, the particle has fallen x metres, and has velocity $v \, \text{ms}^{-1}$ and acceleration $a \, \text{ms}^{-2}$. The particle hits the ground $\ln(1+\sqrt{2})$ seconds after it is dropped. Take $g = 10 \, \text{ms}^{-2}$.
 - (i) Draw a diagram showing the forces acting on the particle. Deduce that $a = \frac{1}{10} (100 v^2)$.
- (ii) Express v as a function of t. Hence find the speed with which the particle hits the ground, giving the answer in simplest exact form.
- (iii) Find in simplest exact form the distance fallen by the particle before it hits the ground.

Marks

2

4

2

3

3

2

4

3

Question 7	Begin a new page	Marks
(a) a, b, c denote the lengths of the contract of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the lengths of the contract a, b, c denote the contract a, c denote the contract a, c denote a, c denote the contract a, c denote a, c	ne sides of a triangle. $\binom{2}{2}^2$ as the product of four factors.	2
(ii) Hence show that $(b^2 + c^2 - a)$,	3 1
 (b) Consider the function f(x) = (i) Show that the function E(x): (ii) Hence express cos⁻¹ x as the diagram, sketch the graphs of 	= $f(x) + f(-x)$ is even, and $O(x) = f(x) - f(-x)$ is odd. sum of an even function and an odd function. On the same	2 3
(i) Show that $u_1 u_2 + u_2 u_3 = u_3$ (ii) Use Mathematical Induction to	1	2 4

Question 8

Begin a new page

- (a) Code numbers of three digits are made from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 where no digit is repeated.
 - (i) Find the number of different code numbers that can be formed.
 - (ii) How many of these code numbers are such that the three digits do not occur in increasing order of magnitude, reading from left to right?

(b) Consider the function $f(x) = x - \frac{3\sin x}{2 + \cos x}$.

(i) Show that $f'(x) = \left(\frac{1-\cos x}{2+\cos x}\right)^2$.

(ii) Hence show that $x > \frac{3\sin x}{2 + \cos x}$ for x > 0.

(c)(i) Show that $\sin(2r+1)\theta - \sin(2r-1)\theta = 2\sin\theta\cos 2r\theta$. Hence show that $\sin\theta \sum_{r=1}^{n}\cos 2r\theta = \frac{1}{2}\{\sin(2n+1)\theta - \sin\theta\}.$

(ii) Hence evaluate $\sum_{r=1}^{100} \cos^2 \left(\frac{r\pi}{100} \right).$

3

3

1

7

1(a) Outcomes Assessed: (i) E6 (ii) E6

Criteria	7 JEC. 1 194	Marks
(i) • both x intercepts correct		1
(ii) • graph of $y = \{f(x)\}^2$	The second of th	Jul 1
• shape of $y^2 = f(x)$	in the second	1.
• asymptotes and x intercepts for $y^2 = f(x)$	The second se	1 1
• shape of $y = \cos^{-1} f(x)$		
• asymptote and y intercept for $y = \cos^{-1} f(x)$	Service and the first of	7 1 7 %

Answer

(i)
$$y = 1 - 2e^{-x^2}$$
 $y = 0 \Rightarrow e^{-x^2} = \frac{1}{2} \Rightarrow -x^2 = \ln \frac{1}{2}$ $\therefore x^2 = \ln 2$. Hence x intercepts $\pm \sqrt{\ln 2}$

1(b) Outcomes Assessed: (i) E6 (ii) E6 (iii) E6

Marking Guidelines	
Criteria	Marks
(i) • find $f'(x)$ and note $f'(x) > 0$ for $x \neq \pm 1$	1
(ii) • shape and position of curve	1
• asymptotes with equations	1
(iii) • considering intersections of curve with line $y = kx$ for varying k	-1
• deducing values for k are $k < 0$ or $k > 1$	1

Answer

(i)
$$f(x) = \frac{x}{1 - x^2}$$
 has domain $\{x : x \neq \pm 1\}$
$$f'(x) = \frac{1 \cdot (1 - x^2) - x \cdot (-2x)}{(1 - x^2)^2} = \frac{1 + x^2}{(1 - x^2)^2}$$

 $\therefore f'(x) > 0 \quad \text{for } x \neq \pm 1$

Hence f is an increasing function for all x in its domain.

(iii) The real roots of $\frac{x}{1-x^2} = kx$ are the x coordinates of the points of intersection of the curve with the line y = kx, which passes through the origin O and has gradient k. As k varies, line y = kx turns around O. The tangent to the curve at the origin has gradient 1, and equation y = x. There will be 3 intersection points, and hence 3 distinct real roots for the equation, when k < 0 or k > 1.

1(c) Outcomes Assessed: E6

Marking GuidelinesCriteriaMarks• $\frac{dy}{dx}$ in terms of x and y1• value of $\frac{dy}{dx}$ at the point (2,4)1• $\frac{d^2y}{dx^2}$ in terms of x, y and $\frac{dy}{dx}$ 1• value of $\frac{d^2y}{dx^2}$ at the point (2,4)1

Answer

$$2x^{2} + xy - y^{2} = 0$$

$$4x + \left(y + x\frac{dy}{dx}\right) - 2y\frac{dy}{dx} = 0$$

$$(x - 2y)\frac{dy}{dx} + (4x + y) = 0$$

$$\therefore \frac{dy}{dx} = \frac{4x + y}{2y - x} = \frac{12}{6} = 2 \quad at \quad (2,4)$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\left(4 + \frac{dy}{dx}\right)(2y - x) - (4x + y)\left(2\frac{dy}{dx} - 1\right)}{(2y - x)^{2}}$$

$$\therefore \frac{d^{2}y}{dx^{2}} = \frac{(4 + 2) \cdot 6 - 12 \cdot (4 - 1)}{36} = 0 \quad at \quad (2,4).$$

2(a) Outcomes Assessed: (i) E8 (ii) E8

Marking GuidelinesCriteriaMarks(i) • simplification of integrand to obtain $(2-\sec^2 x)$ 1• primitive function1(ii) • rearrangement of integrand to obtain $x + \frac{x}{1+x^2}$ 1• primitive function1

Answer

i)
$$\frac{\cos 2x}{\cos^2 x} = \frac{2\cos^2 x - 1}{\cos^2 x} = 2 - \sec^2 x$$
 (ii) $\frac{x^3}{1 + x^2} = \frac{x(1 + x^2) - x}{1 + x^2} = x - \frac{x}{1 + x^2}$
$$\int \left(2 - \sec^2 x\right) dx = 2x - \tan x + c$$

$$\int \left(x - \frac{x}{1 + x^2}\right) dx = \frac{1}{2}x^2 - \frac{1}{2}\ln(1 + x^2) + c$$

2(b) Outcomes Assessed: HE6

Marking Guidelines	
Criteria	Marks
• substitution to get integral in terms of u	1
• primitive in terms of u	l î l
• primitive in terms of x .	î

44.15 0.000 in PREPARE

Answer

$u=1+e^{x}$	The standard of the standard of the Common particles	$I = \frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}} + c$
$du = e^x dx$	$I = \int \frac{e^{2x}}{\sqrt{1 + e^x}} dx = \int \frac{(u - 1)^2}{\sqrt{u}} \frac{dx}{u - 1} du$	$= \frac{2}{3}u^{\frac{1}{2}}(u-3)+c$
du = (u-1)dx	-	
$dx = \frac{1}{u - 1} du$	$\therefore I = \int \frac{u-1}{u^{\frac{1}{2}}} du = \int \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}}\right) du$	$I = \frac{2}{3} \left(e^x - 2 \right) \sqrt{1 + e^x} + c$

2(c) Outcomes Assessed:

Marking Guidelines Criteria		
using integration by parts	1	
e to the second of the second	l i	
	using integration by parts after once of the company and the	

$$I = \int_{1}^{e} \frac{1}{x^{2}} \ln x \, dx = \left[-\frac{1}{x} \ln x \right]_{1}^{e} - \int_{1}^{e} -\frac{1}{x^{2}} \, dx \qquad \therefore I = -\frac{1}{e} - \left(\frac{1}{e} - 1 \right) = 1 - \frac{2}{e}$$

$$= \left(-\frac{1}{e} - 0 \right) - \left[\frac{1}{x} \right]_{1}^{e}$$

2(d) Outcomes Assessed: (i) HE6 (ii) E8

Marking Guidelines			
Criteria	Marks		
(i) • substitution to obtain integral in terms of t.	1		
• primitive in terms of t.	1		
• exact value of definite integral	1		
(ii) • substitution to obtain integral in terms of u.	1		
value of definite integral	ı		

(i)
$$t = \tan \frac{x}{2} \qquad x = \frac{3\pi}{2} \Rightarrow t = \tan \frac{3\pi}{4} = -1$$

$$dt = \frac{1}{2}\sec^2 \frac{x}{2} dx \qquad x = \frac{5\pi}{2} \Rightarrow t = \tan \frac{5\pi}{4} = 1$$

$$= \frac{1}{2}(1+t^2)dx \qquad 2 + \cos x = 2 + \frac{1-t^2}{1+t^2} \qquad = \frac{2}{\sqrt{3}} \int_{-1}^{1} \frac{\sqrt{3}}{3+t^2} dt$$

$$= \frac{3+t^2}{1+t^2} \qquad = \frac{2}{\sqrt{3}} \left[\tan^{-1} \frac{t}{\sqrt{3}} \right]_{-1}^{1}$$

$$\therefore I = \frac{2}{\sqrt{3}} \left\{ \frac{\pi}{6} - \left(-\frac{\pi}{6} \right) \right\} = \frac{2\pi\sqrt{3}}{9}$$

5

$$u = 4\pi - x$$

$$du = -dx$$

$$x = \frac{3\pi}{2} \Rightarrow u = \frac{5\pi}{2}$$

$$x = \frac{5\pi}{2} \Rightarrow u = \frac{3\pi}{2}$$

$$J = \int_{\frac{3\pi}{2}}^{\frac{3\pi}{2}} \frac{x}{2 + \cos u} dx \qquad \therefore J = \int_{\frac{3\pi}{2}}^{\frac{3\pi}{2}} \frac{4\pi}{2 + \cos u} . du - J$$

$$= \int_{\frac{3\pi}{2}}^{\frac{3\pi}{2}} \frac{4\pi - u}{2 + \cos u} . - du \qquad 2J = 4\pi \int_{\frac{3\pi}{2}}^{\frac{3\pi}{2}} \frac{1}{2 + \cos u} . du$$

$$= \int_{\frac{3\pi}{2}}^{\frac{3\pi}{2}} \frac{4\pi - u}{2 + \cos u} . du \qquad = 4\pi . \frac{2\pi\sqrt{3}}{9}$$

$$\therefore J = \frac{4\pi^2 \sqrt{3}}{9}$$

$$\therefore J = \frac{4\pi^2 \sqrt{3}}{9}$$

3(a) Outcomes Assessed: E3

Marking Guidelines		
Criteria	Marks	
• deduction of the possible values of $arg(x+i)$		
• expressing x in the form $\cot n \frac{\pi}{8}$	i	
• writing the possible values of x in surd form	1	

Answer

 $(x+i)^4$ imaginary $\Rightarrow \arg(x+i)^4 = 4\arg(x+i) = n\frac{\pi}{2}, \quad n \text{ odd.} \quad \therefore \arg(x+i) = n\frac{\pi}{8}, \quad n \text{ odd}$ Since x is real, the point representing x in the Argand diagram lies on the horizontal axis, and the point representing x+i lies in the first or second quadrant.

For
$$x > 0$$
, $\arg(x+i) = \frac{\pi}{8}$, $\frac{3\pi}{8} \implies x = \cot \frac{\pi}{8}$, $\cot \frac{3\pi}{8}$
For $x < 0$, $\arg(x+i) = \frac{5\pi}{8}$, $\frac{7\pi}{8} \implies -x = \cot \frac{\pi}{8}$, $\cot \frac{3\pi}{8}$
 $\frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2} \implies \begin{cases} \cot \frac{\pi}{8} = \tan \frac{3\pi}{8} \\ \cot \frac{3\pi}{8} = \tan \frac{\pi}{8} \end{cases}$. Hence $x = \pm \tan \frac{\pi}{8}$, $\pm \tan \frac{3\pi}{8}$.

If
$$t = \tan \frac{\pi}{8}$$
, $\frac{2t}{1-t^2} = \tan \frac{\pi}{4} = 1$. If $t = \tan \frac{5\pi}{8}$, $\frac{2t}{1-t^2} = \tan \frac{5\pi}{4} = 1$

Hence
$$\tan \frac{\pi}{8}$$
, $\tan \frac{5\pi}{8}$ are the roots of $t^2 + 2t - 1 = 0$.

$$\tan \frac{\pi}{8} > 0 \implies \tan \frac{\pi}{8} = -1 + \sqrt{2}$$

$$\tan \frac{5\pi}{8} < 0 \implies \tan \frac{5\pi}{8} = -1 - \sqrt{2}$$

$$\Rightarrow x = \pm (\sqrt{2} - 1), \pm (\sqrt{2} + 1). \text{ (Since } \tan \frac{3\pi}{8} = -\tan \frac{5\pi}{8} = 1 + \sqrt{2}\text{)}$$

3(b) Outcomes Assessed: (i) E3 (ii) E3

Marking Guideliz

uennes	
a	Marks
and the second s	1
	l i
	1
	aeimes a

(i)
$$z = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = 4\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -2\sqrt{3} + 2i$$

$$w = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 1 + \sqrt{3}i$$
(ii) $P\left(-2\sqrt{3}, 2\right), Q\left(1, \sqrt{3}\right)$

$$PQ^{2} = \left(1 + 2\sqrt{3}\right)^{3} + \left(\sqrt{3} - 2\right)^{2} = 20$$

$$\therefore PO = 2\sqrt{5}$$

3(c) Outcomes Assessed: (i) E3 (ii) E3

Warking Guidelin	ies			1.5
Criteria			Marks	\Box
(i) • modulus / argument form	3.200 at 5		27341 AS	-
(ii) • circle with correct centre and radius	and the same of th		1	1
• possible values for z	42.42		1 1	1
• possible values for arg z	1. 2 + COS 4	** ±	1	1
	W	′ "	1	- 1 '

M. 11-11.1 1 =

(i)
$$\sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(ii) Locus of P is a circle, centre $C(\sqrt{3},1)$ and radius 1.

|z| takes its minimum and maximum values for P at points R and Q respectively. OC = 2, $RC = 1 \Rightarrow OR = 1$, OQ = 3. Hence $1 \le |z| \le 3$.

OT is tangent to the circle at T. Then $O\hat{T}C = 90^{\circ}$ and

OT is tangent to the circle at T. Then $\hat{OTC} = 90^{\circ}$ and $\hat{\sin} \hat{TOC} = \frac{1}{2} \Rightarrow \hat{TOC} = \frac{\pi}{6}$. Hence $0 \le \arg z \le \frac{\pi}{3}$.

3(d) Outcomes Assessed: (i) E3 (ii) E3

Marking Guidelines	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1
<u>Criteria</u>	Para and the second sec	Marks
(i) • \overrightarrow{PQ} represents $z_2 - z_1$		
• deduction \overrightarrow{QR} represents $i(z_2 - z_1)$ and hence is per	pendicular to \overrightarrow{PQ} .	1
(ii) • deduction \overrightarrow{PS} represents $i(z_2 - z_1)$	The second second	1
• S represents $z_1 + i(z_2 - z_1)$	The second of th	1

Answer

- (i) The vector \overrightarrow{PQ} represents z_2-z_1 . \overrightarrow{PQ} rotated anticlockwise by $\frac{\pi}{2}$ represents $i(z_2-z_1)$. Now \overrightarrow{OR} is the vector sum of the vectors representing z_2 and $i(z_2-z_1)$, as shown in the diagram. Clearly $P\widehat{Q}R = \frac{\pi}{2}$, and ΔPQR is right angled at Q.
- (ii) If \overrightarrow{PQRS} is a rectangle, \overrightarrow{PS} is parallel and equal to \overrightarrow{QR} , and hence \overrightarrow{PS} also represents $i(z_2-z_1)$. Now \overrightarrow{OS} is the vector sum of \overrightarrow{OP} and \overrightarrow{PS} . Hence S represents $z_1+i(z_2-z_1)$.

4(a) Outcomes Assessed: (i) E3, E4 (ii) H5, E4 (iii) PE3 (iv) H5

Marking Guidelines

THAT HING OUTCOMES	
<u>Criteria</u>	Marks
(i) • PQ^2 in terms of θ	1
• substitution of $(ct, \frac{c}{t})$ into equation of circle and simplification	١,
• deduction $\alpha \beta \gamma \theta = -1$ (with explanation)	1 1
(ii) • product of gradients CP and AB is -1	li
 deduction MCN perpendicular to CD and hence parallel to AB 	l ī
(iii) correct sequence of geometric deductions, giving reasons, to show $CA = CR$	3
(award 2 marks if sequence of deductions is correct, but one reason missing)	1
award 1 mark if sequence of deductions is correct, but two or more reasons missing)	
(iv) • deduction that triangle ABC is equilateral with reasons	1

Answers

(i)
$$PQ^2 = 4c^2\left(\theta^2 + \frac{1}{\theta^2}\right)$$
 Hence circle has equation $(x - c\theta)^2 + \left(y - \frac{c}{\theta}\right)^2 = 4c^2\left(\theta^2 + \frac{1}{\theta^2}\right)$. Circle intersects hyperbola at $\left(ct, \frac{c}{t}\right)$ where $\left(ct - c\theta\right)^2 + \left(\frac{c}{t} - \frac{c}{\theta}\right)^2 = 4c^2\left(\theta^2 + \frac{1}{\theta^2}\right)$. Dividing both sides by c^2 and expanding

$$t^2 - 2t\theta + \theta^2 + \frac{1}{t^2} - \frac{2}{t\theta} + \frac{1}{\theta^2} = 4\left(\theta^2 + \frac{1}{\theta^2}\right)$$

$$t^2 - 2t\theta - 3\left(\theta^2 + \frac{1}{\theta^2}\right) + \frac{1}{t^2} - \frac{2}{t\theta} = 0$$

$$t^4 - 2t^3\theta - 3t^2\left(\theta^2 + \frac{1}{\theta^2}\right) - \frac{2}{\theta}t + 1 = 0$$
But the circle cuts the hyperbola at A , B , C and Q .

Hence this equation has roots α , β , γ and $-\theta$.

$$\therefore \alpha \beta \gamma (-\theta) = 1 \text{ and } \therefore \alpha \beta \gamma \theta = -1.$$

(ii) gradient
$$CP = \frac{c(\frac{1}{\theta} - \frac{1}{\gamma})}{c(\theta - \gamma)} = -\frac{1}{\theta \gamma}$$

Similarly gradient $AB = \frac{-1}{\alpha \beta}$
 \therefore gradient CP gradient $AB = \frac{1}{\alpha \beta \gamma \theta} = -\frac{1}{\alpha \beta \gamma \theta}$

Hence $CPD \perp AB$ Also MCN is tangent to the circle at C, hence $MCN \perp CP$ (tangent \perp radius at pt. of contact).

 $\therefore M\hat{C}D + A\hat{D}C = 90^{\circ} + 90^{\circ} = 180^{\circ}$

Hence MCN || AB (supplementary cointerior ∠s on transversal CD)

(iii)
$$\hat{MCA} = \hat{CAB}(Alt. \angle s equal, MN || AB)$$

 $\hat{MCA} = \hat{CBA}(\angle between tangent and chord equal to \angle in alternate segment)$

 $\therefore C\hat{B}A = C\hat{A}B$

:. $\triangle ABC$ is isosceles with CA = CB (equal sides opp. equal \angle 's in $\triangle ABC$)

(iv) Similarly, by constructing tangent to circle at A, and producing AP to meet BC, AB = AC. Hence triangle ABC is equilateral

4(b) Outcomes Assessed: (i) E4 (ii) H5

Marking Guidelines		
<u>Criteria</u>	Marks	
(i) • x intercept in terms of θ	1	
• y intercept in terms of θ	1	
• explanation for area		
(ii) • deduction that maximum occurs for $\theta = \frac{\pi}{4}$.	Ĩ	
• maximum value of area	1	
• coordinates of P in surd form	1	

Answer

5(a) Outcomes Assessed: (i) E4 (ii) E4.

Marking Guidelines	THE REST LETTER STATES	~ . ~ ,		**	2.54,00	
Criteria	constant	*****			Mar	rks
(i) • deduce integer solution would be factor of 1	و معادل بين				1	
 state neither 1 nor -1 is a root and make required 	deduction.	1 /21		er i tarar	5. i	
(11) • application of a suitable method to find equation y	vith explana	ition	COPURED PURSON VINES OF	Emiliar Angle Andrews		******
 equation simplified with all coefficients correct 	•				-1	240
 expression of required product of factors as produ 	ct of roots of	of new ec	mation		l ī	
value of required product of factors	** ** *** *		landori	f 1 () *	i = 1	S. ~

Answer

(i) Any integer root of $x^4 - x^3 + 2x^2 - 2x + 1 = 0$ would have to be a factor of 1. But neither 1 nor -1 satisfies the equation. Hence none of α , β , γ , δ is an integer. The equation of β is an integer. The equation of β is an integer. The equation β is an i

5(b) Outcomes Assessed: (i) E3 (ii) E3 (iii) E4

Warking Guidennes	
Criteria .	Marks
(i) • deduction that there are 5 roots, each with modulus 2, one being -2 • one pair of complex conjugate roots in mod / arg form (with explanation)	1 1
• second pair of complex conjugate roots in mod / arg form	1
(ii) • removing factor $(z+2)$ and identifying zeros of remaining factor • expansion of $(z-\alpha)(z-\overline{\alpha})$ to explain factorisation	- 1
(iii) • sum and product of $\cos \frac{\pi}{5}$, $\cos \frac{3\pi}{5}$	2
• quadratic equation with roots $\cos \frac{\pi}{5}$, $\cos \frac{3\pi}{5}$	ī
• $\cos \frac{\pi}{5}$, $\cos \frac{3\pi}{5}$ in simplest surd form	1

Answers

(i)

The five 5th roots of -32 have modulus 2, and are equally spaced by $\frac{2\pi}{5}$ around the circle of radius 2 centred on the origin in the Argand diagram. One of these 5th roots is -2. The others are $\alpha = 2\left\{\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right\}, \ \overline{\alpha} = 2\left\{\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right)\right\}$ $\beta = 2\left\{\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right\}, \ \overline{\beta} = 2\left\{\cos\left(-\frac{3\pi}{5}\right) + i\sin\left(-\frac{3\pi}{5}\right)\right\}$

(ii) $0 = z^5 + 32 = (z+2)(z^4 - 2z^3 + 4z^2 - 8z + 16)$ Hence α , $\overline{\alpha}$, β , $\overline{\beta}$ are roots of $z^4 - 2z^3 + 4z^2 - 8z + 16 = 0$. $\therefore z^4 - 2z^3 + 4z^2 - 8z + 16 = (z - \alpha)(z - \overline{\alpha})(z - \beta)(z - \overline{\beta})$ But $(z-\alpha)(z-\overline{\alpha}) = z^2 - (\alpha + \overline{\alpha})z + \alpha\overline{\alpha} = z^2 - 2\operatorname{Re}(\alpha).z + |\alpha|^2$ $\therefore z^4 - 2z^3 + 4z^2 - 8z + 16 = \left\{z^2 - \left(4\cos\frac{\pi}{5}\right)z + 4\right\}\left\{z^2 - \left(4\cos\frac{3\pi}{5}\right)z + 4\right\}$

(iii) Equating coefficients of z: $-8 = -16\left(\cos\frac{\pi}{5} + \cos\frac{3\pi}{5}\right) \Rightarrow \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$ Equating coefficients of z^2 : $4 = 4 + 4 + 16\cos\frac{\pi}{5}\cos\frac{3\pi}{5} \Rightarrow \cos\frac{\pi}{5}\cos\frac{3\pi}{5} = -\frac{1}{4}$ Hence $\cos \frac{\pi}{5}$, $\cos \frac{3\pi}{5}$ are roots of the quadratic equation $4x^2 - 2x - 1 = 0$.

This equation has solutions $x = \frac{2 \pm 2\sqrt{5}}{8} = \frac{1 \pm \sqrt{5}}{4}$. Hence $\cos \frac{\pi}{5} > 0$, $\cos \frac{3\pi}{5} < 0 \Rightarrow \cos \frac{\pi}{5} = \frac{1}{4} (1 + \sqrt{5})$, $\cos \frac{3\pi}{5} = \frac{1}{4} (1 - \sqrt{5})$

6(a) Outcomes Assessed: (i) E7 (ii) E8

Warking Guidennes	
Criteria	Marks
(i) • inner and outer radius and height of cylindrical shell in terms of x	1
• volume of cylindrical shell in terms of x	1
• volume of pond as limiting sum of cylindrical shells and then integral	1
(ii) • primitive function and substitution of limits	2
• conversion to capacity in litres	1

Answer

(i)
$$y = 2 - \cos^2 x$$

 $x = \pm \frac{\pi}{4} \Rightarrow y = 2 - \frac{1}{2} = \frac{3}{2}$ Then height of cylindrical shell is given by
$$h = \frac{3}{2} - \left(2 - \cos^2 x\right) = \cos^2 x - \frac{1}{2}$$

$$h = \cos^{2} x - \frac{1}{2}$$

$$R = 1 - x$$

$$r = 1 - x - \delta x$$

$$\Rightarrow \begin{cases} \delta V = \pi (R^{2} - r^{2})h \\ = \pi (R + r)(R - r)(\cos^{2} x - \frac{1}{2}) \\ = \pi \{2(1 - x) - \delta x\}(\delta x)(\frac{1}{2}\cos 2x) \end{cases}$$

$$\delta V = \pi (1 - x)\cos 2x \, \delta x$$

$$(ignoring second order terms in (\delta x)^{2})$$

$$\therefore V = \lim_{\delta x \to 0} \sum_{x = -\frac{\pi}{4}}^{x = \frac{\pi}{4}} \pi (1 - x)\cos 2x \, \delta x$$

$$= \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 - x)\cos 2x \, dx$$

(ii)
$$V = \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1-x)\cos 2x \, dx = \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos 2x \, dx - \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x \cos 2x \, dx$$

$$\therefore V = \frac{\pi}{2} [\sin 2x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} - 0 \quad (since \ x \cos 2x \ is \ an \ odd \ function)$$

$$\therefore V = \frac{\pi}{2} \{1 - (-1)\} = \pi$$

Hence the pond has volume π m³ and capacity 1000π L ≈ 3142 L.

6(b) Outcomes Assessed: (i) E5 (ii) E5 (iii) E5 **Marking Guidelines**

The state of the s	
Criteria	Marks
(i) • diagram showing weight and resistance forces	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
• use of Newton's second law to deduce a in terms of v	1 1
dt	1
(ii) • $\frac{dt}{dt}$ in partial fraction form	ļ
dy dy	1
• primitive function, then sub-struct	1 1
• primitive function, then substitution to obtain t as a function v	1
v as a function of t	1 1
 substitution and simplification to obtain simplest exact value of speed on impact 	1 1
A. 2	1 *
(iii) • using either $a = v \frac{dv}{dx}$ or $a = 1 \frac{dv}{dx}$	i .
(iii) • using either $a = v \frac{dv}{dx}$ or $a = \frac{1}{2} \frac{dv^2}{dx}$ to obtain $\frac{dx}{dv}$ or $\frac{dx}{d(v^2)}$ in terms of v	1 1
$av = av = a(v^2)$	1
• primitive function, then substitution to find x in terms of y	1 1
• substitution and simplification to obtain simplest exact value of distance fallen	1 1
——————————————————————————————————————	1 1

Answer

(ii)
$$\frac{dv}{dt} = \frac{1}{10} (100 - v^2)$$

$$\frac{dt}{dv} = \frac{10}{(10 + v)(10 - v)}$$

$$10e^{2t} - ve^{2t} = 10 + v \implies v = 10 \frac{e^{2t} - 1}{e^{2t} + 1}$$

$$= \frac{1}{2} \left\{ \frac{1}{(10 + v)} + \frac{1}{(10 - v)} \right\}$$

$$t = \frac{1}{2} \left\{ \ln(10 + v) - \ln(10 - v) \right\} + c$$

$$t = 0, v = 0 \implies c = 0$$

$$t = \ln\left(1 + \sqrt{2}\right) \implies e^{2t} = \left(e^{t}\right)^{2} = \left(1 + \sqrt{2}\right)^{2} = 3 + 2\sqrt{2}$$

Hence particle hits ground with speed $5\sqrt{2}$ ms⁻¹.

(iii)
$$\frac{1}{2} \frac{dv^2}{dx} = \frac{1}{10} (100 - v^2)$$

$$\frac{dx}{d(v^2)} = \frac{5}{(100 - v^2)}$$

$$x = -5 \ln A (100 - v^2), \quad A \text{ constant}$$

$$x = 0, \quad v = 0 \implies A = \frac{1}{100}$$

$$x = -5 \ln \left(1 - \frac{v^2}{100}\right)$$

$$v = 5\sqrt{2} \implies x = -5 \ln \left(1 - \frac{50}{100}\right)$$

$$\therefore x = -5 \ln \frac{1}{2} = 5 \ln 2$$

Alternatively
$$v \frac{dv}{dx} = \frac{1}{10} (100 - v^2)$$

$$\frac{1}{v} \frac{dx}{dv} = 10 \frac{1}{(100 - v^2)}$$

$$\frac{dx}{dv} = 5 \frac{2v}{(100 - v^2)}$$

$$x = -5 \ln(100 - v^2) + b$$

$$x = 0, v = 0 \implies b = 5 \ln 100$$

$$x = -5 \ln\left(\frac{100 - v^2}{100}\right) = -5 \ln\left(1 - \frac{v^2}{100}\right)$$

Particle falls 5ln2 metres before it hits the ground:

7(a) Outcomes Assessed: (i) P4 (ii) PE3

Marking Guidelines

Criteria	Marks
(i) • initial factorisation by difference of squares	1
• rearrangement of each factor as a difference of squares	1 1
• final factorisation	1
(ii) • required deduction made from triangle property	1

Answer

(i)

$$4b^{2}c^{2} - (b^{2} + c^{2} - a^{2})^{2} = \{2bc - (b^{2} + c^{2} - a^{2})\}\{2bc + (b^{2} + c^{2} - a^{2})\}\}$$

$$= \{a^{2} - (b - c)^{2}\}\{(b + c)^{2} - a^{2}\}$$

$$= \{a + (b - c)\}\{a - (b - c)\}\{(b + c) + a\}\{(b + c) - a\}$$

$$= (a + b - c)(a - b + c)(a + b + c)(b + c - a)$$

(ii) $a > 0, b > 0, c > 0 \Rightarrow (a+b+c) > 0$

Also in a triangle, the sum of any two sides is greater than the third side.

Hence the other three factors are also strictly positive.

$$\therefore 4b^2c^2 - (b^2 + c^2 - a^2)^2 > 0 \qquad \therefore (b^2 + c^2 - a^2)^2 < 4b^2c^2$$

7(b) Outcomes Assessed: (i) P5 (ii) P5

Marking Guideline

Wiai king Guidennes		
<u>Criteria</u>	Marks	
(i) • use definition of even function to show $E(x)$ is even	1	
• use definition of odd function to show $O(x)$ is odd	1	
(ii) • expression for $\cos^{-1} x$ in terms of $E(x)$ and $O(x)$	1	
• graph of $y = \frac{1}{2}E(x)$, with domain restricted to $-1 \le x \le 1$. 1	
• graph of $y = \frac{1}{2}O(x)$		

Answer

(i)
$$E(-x) = f(-x) + f(-(-x)) = f(-x) + f(x) = f(x) + f(-x) = E(x)$$
 Hence $E(x)$ is even.
 $O(-x) = f(-x) - f(-(-x)) = f(-x) - f(x) = -\{f(x) - f(-x)\} = -O(x)$ Hence $O(x)$ is odd.

(ii)
$$\frac{1}{2} \{ E(x) + O(x) \} = f(x) \implies f(x) = \frac{1}{2} E(x) + \frac{1}{2} O(x)$$
 where $\frac{1}{2} E(x)$ is even, and $\frac{1}{2} O(x)$ is odd.

$$E(x) = \cos^{-1} x + \cos^{-1}(-x)$$

$$= \cos^{-1} x + \pi - \cos^{-1} x$$

$$\therefore E(x) = \pi, \quad -1 \le x \le 1$$

$$O(x) = \cos^{-1} x - \cos^{-1}(-x)$$

$$= \cos^{-1} x - (\pi - \cos^{-1} x)$$

$$\therefore O(x) = 2\cos^{-1} x - \pi$$

$$\cos^{-1} x = \frac{1}{2}E(x) + \frac{1}{2}O(x)$$

where
$$g(x) = \frac{1}{2}E(x) = \frac{\pi}{2}, -1 \le x \le 1$$
 is an even function and $h(x) = \frac{1}{2}O(x) = \cos^{-1}x - \frac{\pi}{2}$ is an odd function.

7(c) Outcomes Assessed: (i) H5 (ii) HE2, E9

Marking Guidelines

Criteria	Marks
(i) • using the recurrence relationship to write u_2 in terms of u_1, u_3	1
• rearrangement and simplification to obtain required result	li
(II) • use (1) to establish truth of statement for $n-1$	
• write LHS of $S(k+1)$ as $(u_{2k+1}^2 - u_1^2) + u_{2k+1}u_{2k+2} + u_{2k+2}u_{2k+3}$ if $S(k)$ is true	. 1
use same procedure as in (i) to complete proof that $S(k)$ true $\Rightarrow S(k+1)$ true	1. 1
• deduce truth of $S(n)$ for all integers $n \ge 1$	Î

Answers

(i)
$$u_3 = u_2 + u_1$$
 Hence
 $u_1 u_2 + u_2 u_3 = u_2 (u_3 + u_1)$
 $= (u_3 - u_1)(u_3 + u_1)$
 $= u_2^2 - u_3^2$

(ii) Let S(n), n = 1, 2, 3, ... be the sequence of statements $u_1 u_2 + u_2 u_3 + u_3 u_4 + u_4 u_5 + ... + u_{2n-1} u_{2n} + u_{2n} u_{2n+1} = u_{2n+1}^2 - u_1^2, \quad n = 1, 2, 3, ...$

Consider S(1): $u_1u_2 + u_2u_3 = u_3^2 - u_1^2$ has been proved in (i) $\therefore S(1)$ is true

If S(k) is true: then $u_1u_2 + u_2u_3 + u_3u_4 + u_4u_5 + \dots + u_{2k-1}u_{2k} + u_{2k}u_{2k+1} = u_{2k+1}^2 - u_1^2$ **

Consider S(k+1): LHS = $\left(u_1u_2 + u_2u_3 + u_3u_4 + u_4u_5 + \dots + u_{2k-1}u_{2k} + u_{2k}u_{2k+1}\right) + u_{2k+1}u_{2k+2} + u_{2k+2}u_{2k+3}$ $= \left(u_{2k+1}^2 - u_1^2\right) + u_{2k+2}\left(u_{2k+3} + u_{2k+1}\right) + u_{2k+2}\left(u_{2k+3} + u_{2k+1}\right) + u_{2k+2}\left(u_{2k+3} + u_{2k+1}\right) + u_{2k+2}\left(u_{2k+3} + u_{2k+1}\right) + u_{2k+3}\left(u_{2k+3} + u_{2k+3}\right) + u_{2k+3}\left(u_{2k+3} + u_{2k+3}$

Hence If S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all integers $n \ge 1$.

8(a) Outcomes Assessed: (i) PE3 (ii) PE3

Marking Guidelines			
Criteria			Marks
(i) • correct answer			1
(ii) • counting the code numbers with digits in order as 9C_3 .			
• evaluating ${}^{9}C_{3}$	*		1
• subtraction of value of 9C_3 from (i) to count required code numbers		2121.78	1

Answers

- (i) Number of code numbers is $9 \times 8 \times 7 = 504$
- (ii) There are ${}^9C_3 = 84$ selections of three digits, each giving rise to 3! = 6 code numbers, only one of which has the digits in increasing order. Hence 84 code numbers have their digits in increasing order. Hence 504 84 = 420 code numbers do not have their digits in increasing order.

8(b) Outcomes Assessed: (i) H5 (ii) PE3

Marking Guidelines		
<u>Criteria</u>	Marks	
(i) • apply quotient rule	1	
rearrange and simplify to obtain required result	1	
(ii) • deduce that $f(x)$ is increasing or stationary for $x > 0$	1	
• compare $f(x)$ with $f(0)$ for $x > 0$	1 1	
• evaluate $f(0)$ and deduce required result	1	

13

Answers

(i)
$$f(x) = x - \frac{3\sin x}{2 + \cos x}$$

$$f'(x) = 1 - \frac{3\{\cos x(2 + \cos x) - \sin x(-\sin x)\}}{(2 + \cos x)^2}$$

$$= 1 - \frac{3(\cos^2 x + \sin^2 x + 2\cos x)}{(2 + \cos x)^2}$$

$$= \frac{(2 + \cos x)^2 - 3 - 6\cos x}{(2 + \cos x)^2}$$

$$= \frac{1 - 2\cos x + \cos^2 x}{(2 + \cos x)^2}$$

$$= \left(\frac{1 - \cos x}{2 + \cos x}\right)^2$$

(ii) f'(0) = 0 and $f'(x) \ge 0$ for all x > 0. Hence f(x) is stationary at x = 0, $x = 2n\pi$ and increasing for x > 0, $x \ne 2n\pi$.

$$\therefore f(x) > f(0) \text{ for } x > 0.$$

But
$$f(0) = 0 - \frac{0}{2+1} = 0$$
.

Hence f(x) > 0 for x > 0.

$$\therefore x - \frac{3\sin x}{2 + \cos x} > 0$$

$$x > \frac{3\sin x}{2 + \cos x} \quad \text{for } x > 0$$

8(c) Outcomes Assessed: (i) H5 (ii) H5, E9

Marks
1
l i
l î
1 1
1 1

Answer

$$\sin(2r+1)\theta = \sin 2r\theta \cos \theta + \cos 2r\theta \sin \theta$$
$$\sin(2r-1)\theta = \sin 2r\theta \cos \theta - \cos 2r\theta \sin \theta$$

$$= \sin(2n+1)\theta - \sin\theta$$

$$\therefore \sin\theta \sum_{r=1}^{n} \cos 2r\theta = \frac{1}{2} \left\{ \sin(2n+1)\theta - \sin\theta \right\}$$

$$\sum_{r=1}^{100} \cos^{2}\left(\frac{r\pi}{100}\right) = \sum_{r=1}^{100} \frac{1}{2} \left\{ 1 + \cos\left(\frac{2r\pi}{100}\right) \right\}$$

$$= \frac{1}{2} \sum_{r=1}^{100} 1 + \frac{1}{2} \sum_{r=1}^{100} \cos\left(\frac{2r\pi}{100}\right)$$

$$= \frac{1}{2} (100) + \frac{1}{2} \cdot \frac{1}{\sin\left(\frac{\pi}{100}\right)} \cdot \frac{1}{2} \left\{ \sin\left(\frac{201\pi}{100}\right) - \sin\left(\frac{\pi}{100}\right) \right\} \qquad (using (i) with n = 100, \theta = \frac{\pi}{100})$$

$$= 50 + \frac{1}{4 \sin\left(\frac{\pi}{100}\right)} \left\{ \sin\left(2\pi + \frac{\pi}{100}\right) - \sin\left(\frac{\pi}{100}\right) \right\}$$

$$= 50 + \frac{1}{4 \sin\left(\frac{\pi}{100}\right)} \left\{ \sin\left(\frac{\pi}{100}\right) - \sin\left(\frac{\pi}{100}\right) \right\}$$

Hence
$$\sum_{r=1}^{100} \cos^2(\frac{r\pi}{100}) = 50$$