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Question 1 Begin a new page

@ Px)=(x+2)(x-1)x~3)

(i) Sketch y= P(x) showing the intercepts on the coordinate axes.
1

P(x)
showing the intercepts on the coordinate axes and the equations of any asymptotes.

(i) On separate diagrams, sketch the graphs of y= | P(x) l y= P( |x D ., y=

(b) (i) P(xl .y 1) is a point on the curve y=e ", The tangent to the curve at P passes through
the origin. Find the coordinates of P.

(ii) Find the set of values of the real number k such that the equation ¢ ™ = kx has two
real and distinct solutions.

(¢) Consider the function f(x)=In(1+cosx), =27 <x <27, where x#7, x #—7.
(i) Show that the function f iseven and the curve y= f(x) is concave down for ail

valuesof x in 1ts domain.
(ii) Sketch the graph of the curve y= f(x).

Question 2" Begin a new page

(a) Find all the complex numbers z=a+ib, a, b real, suchthat |z |" —iz = 16-2i .

e+1dx

(b) (i) Find J

x4 x 4T

(ll) Find J —le

(0) (i) Use the substitution 7= tan % to evaluate J
0

% 1
14cos x +sinx

" . 2 X
(if) Hence use the substitution =% — x to evaluate J e (X,

2 o 1+cCosx+sinx

1
(d) (i) If In:j (1+2*)" &, n=0,1, 2, ... show that @n+1)1,=2"+2n1,,
(1]
for n=1, 2, 3,...

%
(ii) Hence find a reduction formula for J = J sec™™x dx

Marks

Question 3 Begin a new page

(a) Inan Argand Diagram, the point P representing the complex number z moves so that
|z - (1 +i)]=1.

(1) Sketch the locus of P.
(i1) Shade the region where |z —(1+i)|<1 and O<arg(z—i)<Z

(b) - Inan Argand Diagram, a regular hexagon ABCDEF, with the vertices taken in
anticlockwise order, has its centre at the ongin O and vertex A at z7=2.

(i) Find the set of values of Im(z) for points z on the hexagon.
(ii) Find the set of values of |z| for poimnts z on the hexagon.
(iif) If the hexagon 15 rotated in a clockwise direction about the origin through an angle

of 45°, find the value in modulus / argument form of the complex number which is
represented by the new position of the vertex C.

(© (If z=cosB + isinB , show that for positive integers n, z" —1,; = 2cosnf and
z

a 1

4
7' ——; = 2isinnf . Hence expand (z ) (z—l) to show that
z

6 + sin'f = %(cos48+3).

(i) By letting x=cos6 , show that the equation 8x*+ 8 (1 - ch)2 =7 has roots

.4 Sn
*cosfs, toos i .
dasumof /3 .
(iv) Hence or otherwise find a surd expression for co % .

rl

4

(iii) Deduce that cos 75, cos %~ have a product of %

Marks




Marks

Question 4 Begin a new page
A 7 Marks
y Question 5 Begin a new page
[ 4 n
¥t oyl Ct’? (a) I‘-—-j xe“cosx dx and J=J ecosx dx
-y - = 1 0 0
a b E4
(i) Use integration by parts to show that I—J = —J’ xe*sinx dx. 2
x y =c 2 0
> (ii) Differentiate xe” and hence find j(x +1)e”™ dx. Hence or otherwise show that 2
I+J=-me” +J‘ xe“sinx dx .
Qasech, btanf ) °
(iii) Evaluate I. 1
x 2 y 2
— -7 =1
l a b
(b) (i) On the same diagram and without using calculus, sketch the graphs of y=e™, y=—e™* 3
2 2 - . -X —-x
The line ! is a common tangent to the hyperbolas. x y=c?, _x_2 - 2’_2_ =1 with points and y=e "cosx, 0<x<2z. Shadetheregionboundedby y=e™, y=ecosx
a b and x=m for x20.
of contact P and Q respectively.
(ii) The region shaded in (i) is rotated through one revolution about the line x =s. Use the 2
. o o, ¢ 2 method of cylindrical shells to show that the volume of the solid of revolution is given by
(1) Considering [ asatangentto xy=c" at. P ¢t,~|, show [ hasequation x+1"y=2ct. 2 ,,
: P ! V=27rj (m-x)e™ (1~cosx) dx.
(ii) Considering / as a tangentto —5 — 1)7)_1 =1 at Qfasecd,btand ), show [ has 2 0
a n
equation xsecd  ytanf - (iil) Use the substitution u=7 —~x toshow V=2me ™ {J ue" du + I}, where I' is. 2
a b ' 0
secO —tan 6 1 as defined in (a). :
(iii) Deduce that - = -—th = Cyrik 1 (iv) Hence find the volume of the solid. 3
(iv) Write the coordinates of Q intermsof t, a, b and ¢, and show that b*t* +4c**—a*=0. 3
Deduce that there are exactly two such common tangents to the hyperbolas.
v) Copy the diagram and use the symmetry in the graphs to draw in the second common 2
(v) Copy g y v Brap o y? Question 6 Begin a new page
tangent with points of contact R on xy=c* and S on — = <5 =1L ] )
) ) a b An object of mass m kg is dropped from rest from the top of a cliff 40 m above
Write the coordinatesof R and § intermsof ¢, a, b and c. the water. Before the object reaches the water, the resistance to its motion has
) ) . s magnitude %mv when the object has speed v ms™. After the object enters the
(vi) Show that if PORS is arhombus, then b* =a® and deduce that ¢* <1. 2 - . ) . ) o
water, the resistance to its motion has magnitude sgmv” . Take g=10ms™.
(vii) Show that if PQRS isa square, then ¢* +2¢* —~1=0 and deduce that 2¢*=a’. 3 . . . . : i
What is the relationship between the two hyperbolas if PORS is a square ? () (i) Write an expression for ¥ before the object enters the water, where x metres is 1
the distance the object has fallen in f seconds.
. d 100 —
(ii) Show 102‘—;- = v , and show that the speed of the object as it enters the 3
-t . \% Vv
wateris Vms™ where V satisfies — + In[l1———] 4+ 0-04 = 0.
100 100
(iif) Show this equation has a solution for V between 20 and 30, and takin g 25 as 3
a first approximation, use Newton's Method to show that V =25-7 to one
decimal place.
5




Marks
Question 6 continued

(b) (i) Write an expression for X after the object enters the water. Deduce the object slows 3
on.entry to the water, and find its terminal velocity in the water.

d .
(ii) Show that # seconds after entering the water IOE% = 100 - v*, and the velocity 3

(v +10)V - 10)

here V is the velocit
(v—lO)(V+10)} , where V is the velocity

vims ™ of the object is given by 2¢=1In {

on entry to the water calculated in (a). '
(iii) How long after it enters the water will the body slow to 105% of its terminal velocity ? 2

Question 7 Begin a new page

(a)

A is a point outside a circle with centre O. P is a second point outside the circle
such that PT = PA where PT isatangent tothe circleat 7. AO cuts the circle at
D and C. PC cutsthecircleat B. AB cuts the circle at E.

(i) Copy the diagram.

(ii) Show that APBT il APTC. 2
(iii) Show that AAPB Il ACPA. 3
(iv) Hence show that DE is parallel to AP. 3

(b) Asequence u,, u,, uy, ... isdefinedby u,=2, u,=12 and

u,=6u,, —8u,, for n23.
(i) Use Mathematical Induction to show that- u, =4" — 2" for n>1. 4
()If S, = u +u, +us+ .. +u, , findanexpression for S, in the form

S,=a2™? + p2""' + ¢ where'a, b, ¢ are numerical constants. 3

n

Marks
Question 8§ Begin a new page
- (a) (i) Giventhat y=x — In(sec x+ tanx), 0< x < Z, show that % = ]-secx. 2
(if) Hence show that x < In{secx +tanx) for 0< x < Z. 3
(b) () Show thay SMA+B)-sin(4-B) 1
2sin B
(i1) Hence show that 2
sin2nx
oosx+cos3x+cosSx+...+cos(2n—3)x +eos(2n—1)x = -
. 2sinx
(iii) Hence evaluate f ’ SI?8x 2
o SInX
(c) (i) Find the values of the constants A and B such that 2
4x*+1= (2x2 +Ax+ 1)(2)62 + Bx+ 1)
(ii) Hence find the prime factors of the integer 2 +1. 3
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Question 1
(a) Outcomes Assessed: (i) PE3 (ii) E6

Marking Guidelines

Criteria

Marks

(i) » one mark for graph of y= P(x)
(if) * one mark for graph of y=|P(x)|
* one mark for graph of y=P(|x|)

* one mark for asymptotes and intercepts of graph of y=

« one mark for graph of y=

1
P(x)

_1
P(x)

Answer P(x)=(x+2)(x=1)(x-3) .
@ ®

YA
6 y=P()

/

y=|P(x)|

-2

=Y

=) 0 1\/3

(b) Outcomes Assessed: (i) E6 (ii) E6

Marking Guidelines

ol =

X

Criteria Marks
=
(i)  one mark for gradient OP = £ 3
xl
« one mark for gradient OP = —e ™
* one mark {or coordinates of P "
(i) « one mark for gradient of tangent = —e -
* one mark for set of values of k
2604 -2




Answer

e o)

@) P(xl , e_x'»)
%,
y=e™ grad. OP =
xl
-dl == e - -X;-
dx grad. tangent at P=—e ™™
. e™ -5
Since OP is tangentat P, . = —e
1
. (x1+1)e_x‘ =0
wx,=-1, P-1, e

(i) y=—ex istangenttothecurve y=e ™ at P(-1, ¢), and intersects the curve at no other point.
By inspection of the graph, for —e <k £0, y=kx has no points of intersection with the curve.
for k>0, y=kx hasexactly one point of intersection with the curve.

Since y=e™*
the curve in two distinct points.

Hence e

(c) Outcomes Assessed: (i) P5, HS (i) Eé

is steeper than any linear function of x as x — — oo, lines y=kx, k <—e, will intersect

"* =kx has two real and distinct solutions for {k: k< -e}.

Marking Guidelines

Criteria Marks
(i) + one mark for showing f{-x)= f(x) 3
« one mark for finding f”(x)
» one mark for showing f*(x) <0
(ii) » one mark for asymptotes, endpoints and intercepts of graph y= f(x) 2
» one mark for graph y= f(x)
Answer .
(i)
®
f(x)=1n (1+cos x) 17 In (1+ cosx)
F=x)=1In {L +cos(~x)} =In (1+cos x) = f(x) y oz 12
Hence f is an even function. ( 27E<) | In2 I (27, In2)
, —~sinx |z / | /
X) = -
7 ( ) 1+cos x ] py t 2 5 3 1 = -
") = cos x (1+cos x)—sinx(=sin x) AW 2\ [ F
fhx) == (Tt cos )’ , |
_ cosx+cos®x+sin’x | |
- (1+cosx)? r=-n x=r
_ cos x +1
T (1+cosx)*
-1
s frx)= <0 (since 1+cosx>0,x #t 7w
Fra)=T——=<0 )

Hence curve is concave down throughout its domain.

Question 2

(a) Outcomes Assessed: E3

Marking Guidelines

Criteria Marks
» one mark for equating imaginary parts to evaluate a
* one mark for equating real parts to get equation 1n b 3
* one mark for values of z
Answer
z=a+ib, a, breal. Equating real and imaginary parts,
lz|*—iz=a’+b*~ia+b a=2 b:+b-12=0
=
w16 -2i= (a2+b2+b) —ia a’+b2+b=16} (b+4Xb-3)=0
L a=2,b=-4 o a=2, b=3
Hence z=2~4i o z=2+3i
(b) Outcomes Assessed: (i) H5 (i) E8
Marking Guidelines
Criteria Marks
(1) * one mark for Integration 1
(ii) » one mark for partial fractions 2
* one mark for integration
Answer
. e*+1
(i) j dx = [. 1+e "
(i J'x +x+1 ¥ +1 +x j e .
) ¥ ) =l e
(c) Outcomes Assessed: (i) ES (i) E8
Marking Guidelines
Criteria Marks
(1) * one mark for integral in terms of 7 2
* one mark for evaluation of integral
(ii) » one mark for integral in terms of u 2
* one mark for evaluation of integral
Answer
)
t=tan % 5 !
di=4%sec’% dx =0 = 1=0 f ﬁlm.__dx = 1427 2
. o l-4cosx +sinx 2(1+1) 1417
2dt=(1+tan > %) dr x=% =1=1 X
1
2 =| — dt
=1 dt o 1+t
—7?
14+cosx+smx = l—l-1 ’2 212 = 2+21 n[1+t|]
1+1 1+1 1+1¢




%

x
(ii) Let I=f —_—dx
o l+cosx+sinx
"y 1 0 b I _
u=z-x I= f — izt =J ey
du=—dx 5 1+ sinu +cosu o 1+cosu+sinu
x=0 = u=% 'y z
2 ,-_1:!5} - —J —_—
x=%=u=0 2Js l+cosu+sinu o l+cosu+sinu
i1
x=%-u I = ZIn2 -~ I
€OS X + SInXx =sin u+ cosu 21 = %an
z
2
2 J — iy = ZIn2
o l+cosx+sinx
(d) Outcomes Assessed: (i) ES8 (ii) E8
Marking Guidelines
» Criteria Marks
(1) *one mark for integration by parts
» one mark for use of x’ =(l+x2)-1 3
» one mark for obtaining recurrence relation 2
(ii) * one mark for integral in terms of u = tan x
* one mark for recurrence relation
Answer
® (i)
1 u=tan x x=0 =u=0
2\ 71
Ln=f(1+x) dx du =sec’ x dx x=%=u=1

0

1 1
_ n _ 2 n-1
_[x(l+x2) ]O J-ox,n(Hx) 2x dx
1
=2" - 2nj x’(l-i-)cz)"-l dx
[}

1
=2”—-2nj (1422 =1)1+22)"" ax

o

=2"_2"U:(1”2)n dx -Ll(uxz)"'l dx}

I,=2"-2nI +2nl,,
s @n+)I,=2"+2n1

%
JM=J sec™ x dx

0

%
=J (seczx)m-l. sec’x dx
0

1

=J (l-i-uz)”l~1 du

0
W =1, m=123,..
Rlm-1)+1}J,=2""+2(m-1)1,_,

(m-1)J,=2""+ 2m-1)J,,

s B=123 m=2,3 4,..
Question 3
(a) Outcomes Assessed: ()E3 (i) E3
Marking Guidelines
Criteria Marks
(1) * one mark for skeich 1
(ii) » one mark for shading region 1

Answer

(i), (i) Locusof P 1sthe circle centred on (1 s 1) with radius 1 unit.

0

(b) Outcomes Assessed: (i) E3 (i) E3 (iii)E3

Marking Guidelines

Criteria Marks
(1)  one mark for set of values of Im(z) %
(i) * one mark for set of values of |z| 1
(iii) » one mark for value of complex number
Answer
4 () -8 <Im(z) <4B
C B ! B
(i) B <|z]<2
\ /
\ | 72 (iii) Each of the triangles AAOB, ABOC,... 1s
D \|7 4 equilateiral with side 2 units.
{ AP o AOC =2%60°= 120°
=2 0 2 x After rotation clockwise through 45°, OC will
make an angle 75°, or 3Z radians, with the
posttive x axis. Hence C will then represent
E F the complex number 2 (cos -‘:4’25 + sin -f’-”z-)
=B

(c) Outcomes Assessed: (i) E2, E3 (ii)E2, E3 (iii) E4 (iv) E4

Marking Guidelines

« one mark for value of cos %

Criteria Marks
. . 1
(1) = one mark for use of De Moivre's Theorem to obtain expressions for z” +—
Z
_ n* AN 3
« one mark for expansionof | z+—] +[z—=| intermsofz
z Z
+ one mark for obtaining expression for cos *8 +sm*0  in terms of cos 46
(ii) » one mark for showing equation reduces to cos 40 = % 2
* one mark for solving this equation to obtain values of x
(iit) » one mark for using product of roots in terms of coefficients to evaluate cos 1”—2 cos 5—’2’
« one mark for using sum of products of roots taken (wo at a time in terms of 3
coefficients to evaluate cos % +cos > 3£
* one mark for evaluating cos f—z + cos -f—”z-
: . . 5
(iv) » one mark for forming quadratic equation with roots cos 75, cos 2% )




Answer
(i) Using De Moivre's Theorem,
z=cos0 +isinf

7" = cosn@ +i sin n6

27" =cos(—n8@ )+i sin(-n8 ) = cos.n6 —i sin né

i" =2cosnf, z"- —1;‘- = 2isinnf
Z

4 4
(z+-1-) +(z—l) =2(z“+6z1-—1;+—17)
z z 2tz

= 2(z“+ —1;) +12
Z

A

(2cos 6 )* +(2isin@)* =2 (2cos49 ) + 12

(ii)
x=cos b, 8x‘+8(l——x2)2=7
1-x*=sin’0 = 8(cos46+sin49)=7

2 (cos46 +3)=7
Hence equation becomes

x=cos@ , cos46=%
6ntl
46 =2nm £ § :>6=_._( )%
12
n=0,x1 %2 ..
= T S I liz
x=cos &, cossZ, cosiZ, cosLE

Answer

®

dx dy dy dx
x=ct =—=¢ o= e
dt dx dt dt
N S
Y= dt t* t?
. 1
Hence tangent ! has gradient — — and

1
equation x-+t’y=k, k constant, where

c
P(ct, —J lieson | = ct+ct=k. Hence
13

(i)

x =asech =:>—idl = a secO tan @
do

y=btan 6 =>5—2 = bsec’®

LGB b beecd
T dx dé d6 atan
bsecB

tan 6
equation xbsecf — yatan8 = k, k constant,

Hence tangent ! has gradient

ar

16 (cos “@ + sin*6) = 4(cos46 +3) xeos . cos Cos(n—%)’ cos(n'——-l%)

cos*f + sin*0 =4 (cos46 +3)

s
12

e E
. x=tcosy, tcos
2 .
(iii) 8x4+8(1—x2) =7 simplifies to give
16 x* =16 2 +1 =0,
with roots cos f5, —cos 55, cosf—’z’-, —cos &

(iv) cos {'—2 , Cos % are roots of the quadratic

equation x* — J—g-.x + -;;=O.

: 3 3
i1x 251 1 2 _ J;i 7-1 Bl
Then afyd=cos*% cos’ 3% = ¢ x = 5 =S5
2z 25k
Yof =-cos’fy - con™f = -1 s > cosSE o cos k= V3]
where 0 < & < 3% < %, 12 12 2= 55

i3 Sr _ 1 1
Then cosfs cos 5 —+‘/16 =7, and

17 €08 13
= AT )
(cos12 +cos12) = 3
Z = /3
cos 5 + Cos{3 \/;

Question 4

Outcomes Assessed: (i) E2, E3, E4 (i) E2, E3, E4 (iii) E2, E4 (iv) E2, E4
(v) E4, E6 (vi)E2, E4, E9 (vii) E2, E4, E9

Marking Guidelines

Criteria Marks

(1) *one mark for finding gradient of tangent in terms of 2

« one mark for obtaining equation of tangent
(ii) *one mark for finding gradient of tangent in terms of 8 2

» one mark for finding equation of tangent
(iti) * one mark for comparing coefficients to obtain result 1
(iv) * one mark for coordinates of Qin terms of ¢

* one mark for obtaining quartic equation in ¢ 3

* one mark for using this equation to deduce there are exactly two common tangents
(v) +one mark for diagram showing second common tangent 9
* one mark for coordinates of R and §
(vi) *one mark for using geometrical properties of a rhombus to show b? = a? 2
« one mark for deducing t* <1
(vii) * one mark for using geometrical properties of a square to obtain equation 1n ¢ 3
» one mark for deducing that 2¢* = g*
» one mark for recognising the relationship between the rectangular hyperbolas

where Q(asec8, btan8 ) lieson !

= k= absec’® ~ abtan’0 =ab. Hence
xsec ytan 0

b

I hasequation x+1’y=2ct.

! has equation =1.

(iii) Comparing the two forms of the equation of line /, the coefficients must be in proportion. Hence
secf  —tan @ 1

o ) o _

1
1 t? " 2ct Yoo bi? 2ct

@iv)
Q(asec8, btan 6 ) sec’d — tan’@ =1

=Q a’® bt > 2 ’ __bf. 1_ 1 =
T F\ 2’ 2c 2ct 20 )
This quadratic in ¢* has discriminant A =16¢* +4a?b* >0, and hence has two real roots

which are opposite in sign (since their product 1s negative). But > 0, hence there is exactly one solution

for t*, and two solutions for ¢ which are opposites of each other. Each such value of ¢ gives acommon
tangent / to the two hyperbolas.

a*— bt =4ch?
b** + 4c™t? —a*=0

v) (v1)

A O 1s the common midpoint of diagonals PR and (.
Y P(c ' _C_) Hence PQRS is a parallelogram.
y ! gradient PR = 2 .00 = _12.
x* y? N t t
A | — 2 bzl a2 b?
a* b’ x)L ¢ . gradient Q§ = — = 4 - —2(_12)
> c ct a
0 x i
2 2
Q(—a—- —b t) -~ gradient PR . gradient QS = — é‘i‘
2c¢1 7 2¢ a
k I ‘Hence 1if PORS 1s arhombus, PR 1 QS and
2
xy=c

gradient PR . gradient 0§ =—1 = b*=a’,
Then ¢ satisfies a’t* +4c**—a*=0

4c?
=1t =1
a

’)cz z 4C4 ')cz 2
2 -~ Pl

174 —— = 1 t— 1+_._
(_ (12) 04 a2

Hence t*<1

— — 2 2
R(_C,,_C) R =
1 2ct 2¢

1




(vii) If PQRS is a square, then PQRS isa rhombus with Rf’Q:: 45°. Then

2
gradient PR = iz (_z) l —21?
’_1 = 1= 1’ — = = (since 1< 1 for PQRS a rhombus)
gradient PQ = l+(——)(:)l r -1

e 7

1 tJ

1
4 2 , . 4, 4c®
Hence 1 +21>~1=0. But for PQORS a rhombus, ¢ satisfies 7 +—01"~1= 0.
a
: 4c? 2 2 2 _ 2
By subtraction, | —~ —~ 212*=0. But t*# 0. Hence 2¢" =a".
a .

Hence if PORS isa square (and hence a rhombus), then b% = g * and the two hyperbolas have equations
x*—y*=a’and xy=c?, where 2c%=a’,

This relationship between ¢? and a* means that- the rectangular hyperbola x>~ y*=a? rotated

anticlockwise through 45° becomes the recténgular hyperbola xy=¢*.

Question 5
(a) Outcomes Assessed: ()E8 (i)HS (i) ES

Marking Guidelines

Criteria Marks
(i) *one mark for integration by parts of I-J 2
* one mark for obtaining result
(ii) » one mark for finding j(x+ 1)e” dx from the derivative of xe* 2
* one mark for finding the required expression for I+J
(iii) » one mark for value of I 1
Answer
% n . d x x x x
0] 1=J xe*cosx dr, J=J e*cosx dx () —=xe’ = e +xe’ =(x+l)e
[ 0
I—J=f"(x—l)e‘msx dx f(x+1)e" = xethe
1]

n
. = I+J=f (x+1) e cosx dx
==[(x—1)e"smx]o —f xe"sinx dx 0
0

n
n~
x =[xe‘cosx] —f xe*(-sinx) dr
=-—j xe’sinx dx 0 0
Q

il

-1 e"+J xe*sinx dx
0
@ii) 7= ${(r+N+(-1}

I
|
Np—
B
®




(b) Outcomes Assessed: (i)E6 (i) E7 (iii) E8 (iv)ES

Marking Guidelines
Criteria Marks

(i) * one mark for graphsof y=¢7*, y=~e™

* one mark for graph of y=e¢ " cos’
» one mark for shading region
(ii) + one mark for expression for volume of cylindrical shell 8 V in terms of x 2
« one mark for using concept of limiting sum to form integral for V
(iii) « one mark for expressing integral for V interms of u=x —x
+ one mark for rearrangement to express V in terms of / 2

(iv) * one mark for integration by parts forJ.ue ™ du

3
+ one mark for evaluation of J.ue ™ du
« one mark for evaluating V
M (i) R=g—x+6x , r=m—2x
Y <——5——~— h=e™ — e cosx
- Cylindrical shell has volume

Ty ey
where

h R*~r*=(R+r)R-r1)
={2(n -x)+6x}6 x
=2(m—x)6 x
ignoring terms in (8 x)* .

Hence volume of solid of revolution is given by

X

T
V= lim ;-‘85 V= 27rf0 (m—x)e *(1-cosx) dx.

(iii) o
U= —x du=—dr V= 27rf ue* " {t+cosu} (~du)
x=0= u=g i .
X=m = u=0 =27 e"’f we' {l+cosu} du
. 0
1-cosx = 1~ cos(w —u) : =27 e”" J ue du +f uecosu du
=:1 4+cosu 0- 0
=2ﬂe""{J‘ ue" du +I}
0
(iv)
" u u 4 " "
J ue' du = [ue ]o_’j e du V=21re“"{7!:e"—e"+1 +I}
0 0
=7£e"~[e"]: =27re"'{n'e-'-‘—e"+l—%7te"}
—me®—(e"-1) =m(n-2)+2we™

Hence volume is 7 (m~2)+ 27 e™ cu. umts,

Juestion 6

3) Outcomes Assessed: (i) E2, E5 (i) E2, E5 (jii) PE3

Marking Guidelines
Criteria : Marks
(i) e« one mark for expression for % in terms of v 1

(i) » one mark for obtaining expression for %

* one mark for mtegration using initial conditions to find expression for x in terms of v
« one mark for obtaining required equation for speed V on entry to water

(iii) » one mark for showing there is a solution for V lying between 20 and 30 3
+ one mark for applying Newton's method to find expression for next approximation
» one mark for obtaining value of V

\nswer

1) (iii)

Forces on object 1=0 " Let }“='1't‘)/"0" ; f(/l)=/l+ln(1—/l)+0-04
x=0  Initial f(02)=0-02>0  £(0-3)~—0-02<0
1 v =0 conditions A +3)=—U-02<
16 MV and f(A) isa continuous function, Hence
10 rve x f(A)=0 hasasolution for A between
™ x direction 0:2 and 0-3, and ** has.a solution for V
between 20 and 30. Using Newton's Method
mi=10m—gmy - ¥i=10 ~&v with a first approximation 4 =0-25 (V =25)
A)=A+In{1-1)+0-04
IR dy 1 dv 100 -v A ) ( )
) X=v—=10~-5v = 10—= , 1 -
dx dx v FA)=1~ —— = 22
Sl -y, =100 -4 1-4
a2 - = 2 _
10 dv 100—v 100 - v f'((/'l) _ {/1+ln(1-/1)+0-04}(1 A)
—f5% = v + 10010 (100 —v) +¢, ¢ constant 7'4) -4
1=0x=0,v=0 = c=-100 In100 may - 1=2){n(1-2)+0-04}
—-1-x=v+1001n(1~— -!—) A
0 100
f=40} ~4=V+100In (1 gf) A~ -f—%l = 14 U=A) fin@-2)+0-04]
=
v=V -0-04=7% + ln( ‘Tg_o) F'() A
-1 . .
. Speed Vms™ just before entering water satisfies P 1+ %& {ln(l—- 2 +O-04}

\% |4 — ;
W+ n{l-g5) +004=0 0-25 | 1+3(In0-75 + 0-04) = 0.257

0-257 {1+ 378.(1n0.743 + 0.04) =0-257

Hence 4 =0-257= V=25.7 toone decimal place.




. .. . Question 7
(b) Outcomes Assessed: (i) E2, ES (i) E2, E5 (i) ES

! (2) Outcomes Assessed: (i) PE2, PE3, E2, E9 (iii) PE2, PE3, E2, E9 (iv) PE2, PE3, E2, E9
Marking Guidelines

~ Criteria - [Marks Marking Guidelines .
(1) «one mark for expression for ¥ in terms of v Criteria Marks
* one mark for deducing object slows on entry 1o water 3 (1) '+ no marks fo copying diagram
* one mark for finding terminal velocity (ii) * one mark for £BTP = ZTCP with reason 2
. . . dv * one mark for completing deduction of similarity with reasons
(ii) »one mark for obtaining expression for — PB PT
d ; d 3 (iii) » one mark for T-FC with reason
* one mark for expressing & in tt’;hns of partial fractions PB PA 3
_ dt : « one mark for ~~ = —— with reason
* one mark for integration using initial conditions to find expression for ¢ interms of v PA PC ion of similari
(iii) + one mark for selecting correct value of v to substitute in expression for t 2 . __* one mark for completing deduction of similanty with reasons 3
* one mark for value of ¢ (iv) » one mark for £ PAE = ZBCD with reason

* one mark for £BCD = £ DFA with reason

Answer « one mark for reason for DE || AP
(1) After entering the water, Answer
Forces on object t i% Initial dv & 0] (iii) In AAPB, ACPA ‘
v =V conditions (i) ¥= 2 =10-5v" =10 = =100-v" 2B _f ding sides of similar triangles
Lomy? v=V dt dr T FC (corresponding sides of similar triang
10
1 a = Z-_-.)l(___) APBT, APTC are in proportion)
10m +ve x 10 dv 10+v)(10~v PB  PA
x irecti Sy —— e iven PT = PA
direction . : . PA - PC (give )
mi=10m—-Emv? . i=10 -y’ T (10+v) + (10—v) APB=CPA ( common angle) o
d ) " AAPBIL ACPA (two pars of corresponding sides
i =10— % V <0 and i=V>Q 2 o 1 in proportion and included angles are equal)

dv  (v+10)  (v-10)

Hence object slows on entry to the water.

. @iv) PAE=BED (corresponding angles of similar
. 20=10 {OH1D L1 onetant (i) In APBT, - APTC triangles AAPB, ACPA are equal)
0 B vlo 1 (v-—10) TPB= CP" ( common angle) BED DEA (exterior angle of cyclic quadrilateral
. P ) - . . ﬂ = € cycli al
Hence terminal velocity in the wateris 10 ms™. =0 (V+ 10) (v- 10) BTP=TCP (angle between chord BT and tangent BCDEis qual to in};en’ogopposite angle)
v=V (v -10) A=1= A= (V+10) PT is equal to angle in alternate segment) - PAE=DPA
‘ - APBT It APTC (two pairs of corresponding -
o = n {(v +10)(V'-10) angles are equal)  DE Il AP (equal alternate angles on transversal A E)
(v-10) (v +10)
(ili) v=105% of 10 = v=10-5 and 2t = In {((20055)) gz;})} = fml.4, (b) Outcomes Assessed: (i) HE2, E2, E9 (i) H5, E2, E9
. . \ . ) . Marking Guidelines
Hence particle slows to 105% of its terminal velocity 1-4 seconds after entering the water. Criteria Marks

(i) *one mark for showing statement An):u,=4"-2" istrue for n= 1, n=2
* one mark for using reduction formula to express 1 -+ 10 terms of expressions for
U, u,, when A(n)is true for n <k ' 4
* one mark for concluding that if A(n) is true for n < k, theh A(k + 1) is true
+-one mark for deducing that A(n) is true for n> 1
(ii) » one mark for recognising §, as partial sum of the difference of two geometric series

* one mark for finding expression for S in terms of the individual partial sums
* one mark for values of @, b, ¢




Answer
Let A(n) be the statement : =4"=22" n=1,2,3, ..
(i) Consider A1), A(2) : 4'-2'=2=u;, 4'-2"=12=u; . A1), A(2) are both true.

If A(n) is true Jor positive integers n <k (k some positive'integer, k 22) ., then
u,=4"=2"; n=1,2 3 ..k *x
Consider Alk+1), k=2 : u,, = 6u, -8 U,
uM=6(4k—~2")—8:(4“—2"") if Aln) is true for n<k, using **
=6.4"-6.2% ~2 . 4.4%1 44 2 2+
=(6-2)4" - (6-4)2*
=451 gkl

Hence if A(n) istruefor n <k (ksome integer, k 22) , then A(k +1) is true. But A(1) and A(2) are

true, and hence A(3) is true; then A(n) is true for n=1,2, 3 and hence A(4) is true and so on. Hence by
mathematical induction, A(r) is true for all positive integers n > 1.

i) S, = Su, = 2(4*_2k)= St S ot
k1 k=t k=1 k=1
2":4&___ 4!4"‘—1!

= -34(4" - 1) (sum of n terms of geometric progression, a = 4, r=4)

1 4-1

Ll 2(2"-1

22" = -—(2—1—2 = 2(2"-1) (sum of n terms of geometric progression, a =2, r= 2)
k-1 -

. S"=§(4n_1)___2(2n_1)=_:}T 22n¢1__34__~2n41+2 = _1§ 22n+2_2n+l+§_

Question 8
(@) Outcomes Assessed: (i) H5 (ii) PE3, E2, E9

Marking Guidelines
. Criteria Marks

(i) '» one mark for differentiation
* one mark for simplification to obtain required result 2

. . .
(ii) » one mark for using Exx <0 to deducc; function s decreasing for 0 < x < %

* one mark for establishing y=0 when x =0 3
* one mark for deducing the required inequality

Answer

(i) y=x-In(secx +tan x), 0sx<% (i) x=0=> y=0-1In(1+0)=0

d d
g d—%:omrx:o, and 2<0 for 0<x <%
dy | Secxtanx +sec” x dx
il W Hence y= x—~In (secx + tan x) 18 a decreasing
. function, and hence y<0, forO<x<%.
secx (sécx + tan x) ,
=l s T x<In(secx + tan x) forO<x<%.
secx + tan x
=1—secx

¢b) Outcomes Assessed: (i) HS () HS, BZ njHs

Marking Guidelines

Criteria Marks
(1) *one mark for establishing required identity 1
(ii) » one mark for repeated use of this identity .2
+ one mark for simplification to obtain stated result
(iii) » one mark for using this result to rearrange integrand 2
* one mark for evaluation of integral %

Answer ] A
() sin{A+ B)=sin Acos B+ cos Asin B } N sin(A+ B) -sin(A- B) = 2cos Asin B

sin(A +B)~-sin{A—B
sin(A— B) =sin Acos B - cos Asin B ( 2)slnB( ) =cos A

(it Let A=(2n~1)x, B=x. Then

A=(2n-1)x sin2nx —sn2(n-Dx  sin2nx sin2(n—1)x
= cos(2n~1x = = -
B=x 2sin x 2sinx 2sinx
Hence
©cos x+cos3x + cosSx+ ...+ cos(2n—3)x + cos(2n—1)x
_(stx sin0 ) + (sm4x _ sianJ + (s1n6x _ sindx ) +
“\ 2sinx 2sinx 2sinx 2sinx 2sinx 2smnx
o sm2(n-1)x sm2(n—2)x) + (sinan _ sinZ(n—l)x)
2smx 2sin x 2sinx 2sinx
in2
. coSX-+cos3x+.. +cos(2n~1)x LG

2sinx

(i)

% si % ) )
J-T Sin8r v = ZJ (cos x +cos 3x + cos 5x + cos 7x) dx=2[sinx+%sin3x +1§sm5x+%sm7x]
0

&
2

o Sinx [
¥ singx 152
-—-———dx :21—l+l-1 = —
J.o sinx ( 305 7) 105

(c) Outcomes Assessed: (i) PE3, E2 (ii) E2, E9

Marking Guidelines
Criteria Marks
(i) * one mark for obtaining equations for A and B
« one mark for values of 4 and B 2
(if) * one mark for expressing 2'*+1 in form 4x 8% +1
+ one mark for using the polynomial factorisation to obtain factors 145 x 113
* one mark for prime factors 5, 29, 113

Answer
@) 4x4+1s(2x2+Ax+1)(2x’+Bx+1)s4x‘+2(A+B)x3+(AB+4)1‘+(A+B)x+1
N A+B=0 B=-A A=2, B=-2
Equating coefficients : AB+a=0] = AT4d=0 or
A=-2, B=2

Hence 4x4+1s(2x2+2x+1X2x2—2x+1) *k
(i) 241 = 4(2°) " +1={2 (23)’+2(23)+1}{2(23)’—2(2’)+1} . putting x=(2°) in *x.

2% = 2x64+16+1)2x64-16+1) = 145% 113 = 5x29% 113




