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Question 1 Begin a new page

(2
Ny Y=
- =
=f(x
This diagram shows the graphs of y= f(x) y=7"0) P
and its inverse y= f~'(x), and the line |
y= x. The graphs intersectin {0,0) and in | y=£(x)
the point P with x coordinate 8 . |
- [
Ao B x

] 8

Use the substitution #= f™"(x) to show that J F(x) ax = J u f'(u) du
0 Q

and hence show that the area bounded by y = f(x) and y= f7'(x) 1s given by

A= jﬁ{xf'(x) - f(x)} ax.

(b) y=xsin"'x
. dy -1 -1
(i) Show that E:sm x + tan(sm x)

(i) By considering the graph of y=tan8 , deduce that the graph of y=x si‘n'1 x has
exactly one stationary point. Show this stationary point 1s a minimum turning point
at (0,0).

(iii) Sketch the graph of y= xsin™ x. Show thenature of the curve near the endpoints
of its domain.

(V) If f{x)=xsin™x, x20, show ona new diagram the graphs of y= f(x),

itsinverse y= f'(x), and theline y= x. Give the coordinates of any points of
intersection and of the endpoints of the curves.

(v) Use the result in (a) to show that the area bounded by the curves y = f(x) and
2

sinl
y= f(x) between their points of intersection is given by J.

o 1—x

Use the substitution x =sinf to evaluate this area.

Marks
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) Marks T Marks
uestion i . .
Q , Begin a new page ! Question 3 Begin a new page
_ N a3 . R 2 -5
(2) (i) Find the two square roots of 2i 3 (8 z,=1+2i and z,=3—i. Findthevalueof z,"+ 7, . 2
(i) Solve x* +2x+(1-11)=0.
() z=+B+i 4
(i) Write z in modulus / argument form.
(b) Find 4 y a g
) (i) What can you say about itegers n such that z" +(Z)" is rational ?
@ J(1+tan2x)e'“" dx R
(iii) Find the smallest positive integer n such that z" +(Z)" 1sa negative rational
number, and for this value of », state the value of z" +(Z)".
(i) J‘t e dt
3
(iii) JCOS, x dx (¢) o=p+iq where p and g arereal. 9
(i) If z satisfies Re (@ z)=1, show that the locus of the point P representing z in
the Argand diagram is the line px—qy=1.
e?
(¢) Evaluate in simplest exact form J ! dx 2 . — .
: . xlnx - (ii) The vector OQ  represents & in the
Argand diagram. If z# 0 isrepresented
by the vector 57") where P lies on the
z circle with diameter OQ, copy the
(d) Use the substitution = tan% to evaluate J o dx , giving your 3 diagram and show the vector representing
o 1—sinx 7—0 .
answer in simplest exact form.
Show that for such a complex number g,
—o , . .
- is imaginary and hence
z
h2 x In2 - 1
e e” Relo —|=1.
(e If I:f ————dx and JzJ’ ——dx , find the exact values 3 e( Z) !
0o € te o €& +e

of I+J and I—J and hence find the exact values of [ and J.

(iif) Deduce that if z is a non-zero complex number such that the point P representing z
in the Argand diagram lies on the circle with diameter OQ , where  has coordinates

1
(p, g), then the point representing — in the same Argand diagram lies on the line
z

px—qy=1.

(iv) z# 0O satisfies the condition I z—(1+1i )I =/2 . Sketch the locus of the points

. 1. . . .
representing z and ~ in the same Argand diagram, and label each locus with its equation.
z

Considering only values between — and 7 , what are the possible values of argz ?
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Marks
Question 4 Begin a new page
2 2
Hyperbola # has equation 5%— - %—2- =1 and eccentricity e, while ellipse € 15
a
) x? yz
has equation + <5 =1,
1 a®+b*  b*

(i) Show that E has eccentricity &.

(ii) Show that E passes through one focus of #, and # passes through one focus.of .

(iii) Sketch % and £ on the same diagram, showing the foci S, S' of # and T, T'
of £, and the directrices of # and ‘E. Give the coordinates of the foci and the
equations of the directrices in terms of . a and e.

(iv)If# and € intersectat P in the first quadrant, show that the acute angle o between
the tangents to the curves at P satisfies tan @ =2 (e+ %)

(v) What is the smallest possible acute angle between the tangents to the curves # and €
at their point of intersection P ?

2 2
(vi) Find the acute angle between the tangents to the hyperbola f—é - L =1 andthe

2 2
X . . . .
ellipse Y + 29— =1 at their points of intersection. Give your answer to the nearest degree.

5

Question § Begin a new page

(a) Show that the stationary points of y={f(x)}" are exactly those points on the curve
that have x coordinates which are zeros of either f(x) or f'(x).

(b)

y=x'(4-x)

Use the graph of y= x(4—x) to justify the features shown on the graph above.

Copy the graph of y= x*(4-x) * and mark on the coordinate axes the values of
x and y at the stationary points.

©

The shaded region is rotated through one revolution about the .y axis. The volume of the
solid formed is found by taking slices perpendicular to the y axis. The typical slice shown
in the diagram is at a height y above the x axis.

(i) Deduce that &, x,, x,, B . asshown in the diagram, are roots of
x* —8x° +16x* —y=0.

X, +x

(ii) Use the symmetry in the graph to-explain why —2———1 =2 and 9‘—;& =2,

Hence, by considering the coefficients of the equation in (i), show that o8 =—x,x,

and deduce that x,x, =+fy and x,—x,=24—.fy .

N 16
(iii) Show that the volume of the solid of revolution is given by V =8n J \’4 -y dy.
[

Use the substitution y=(4—u)" to evaluate this integral and find the exact volume.

Marks




Marks
Question 6 ) Begin a new page

" A toy of mass m kg has a parachute device attached. It is released from rest at the 15

top of a vertical cliff 40 m high. During its fall, the forces acting are gravity and,
owing to the parachute, a resistance force of magnitude —11~0mv2 when the speed of

the toy is v ms™. After 21In2 seconds, the parachute disintegrates, and then the
only force acting on the toy is gravity. The acceleration due to gravity is taken as

g=10ms™. Attime 7 seconds, the toy has:fallen a distance x metres from the
top of the cliff, and its speed is v ms™.

(i) Show that while the parachute is operating, 10 ¥=100— v*. Hence show that
et -1 . 5 \2
v—lO(m) and x——SIn{l——(w) }

(i) Find the exact speed of the toy and the exact distance fallen just before the parachute
disintegrates.

(iii) After the parachute disintegrates, find an expression for X and use integration to find
the speed of the toy just before it reaches the base of the cliff. Give your answer correct
to 2 significant figures.

Question 7 Begin a new page

(a) The equation x>+ px—1=0 has three real, non-zeroroots o, f, v .
p

w

(i) Find the valuesof a’+B*+7* and «‘+p*+7y* intermsof p, and
hence show that p must be strictly negative.

(ii) Find the monic equation, with coefficients in terms of p, whose roots are

o« B r
By ya of
1
by () If I,,=J(x2—1) dc , n=0,1,2,.. , show that ‘ 8
0
=2 1., n=1,2,3,.
2n+1

(-1)" 2> (n)*

(i) Hence use the method of Mathematical Induction to show that I, = (2 " l) '
n !

for all positive integers n.

7
Question 8

@

Begin a new page

In the diagram, AB and AC are tangents from A to the circle i

¢ s : with centre O, meetin
thecircleat B and C. ADE is a secant of the circle. G is the midpoint of DE ¢
CG produced meets the circle at F. .
(i) Copy the diagram.
(i) Show that ABOC and AOGC are cyclic quadrilaterals.

(iii) Show that BF | ADE.

(b) () If y=x*+(c—x)", where ¢>0, k>0, k#1, show that y has asingle

.stationar_y valu‘e between x=0 and x =c, and show that this stationary value
isamaximum if k¥ <1 and a minimum if k >1.

(ii) Hence show thatif a>0, b>0, a#b, then
a* +p* < (a+b

2

2 2

s .
. a* +b* a+b\*
> ) if O<k<l, and >( ) if k>1 .

Marks




Answers to 4u CSSA HSC Trial Exam 2000

estion 1
A At P, ny replacgmeni) of the v}?-iable
- =X = = = of integration u by x in this
y=f"(x) P y y=x= f(ﬁ)_ / (ﬂ) A definite integral ,
s B B
| By substitution, o j f-l(x) dx =j X f'(x) dx
l . y= f(x) U= f (X) 0 0
| flu)=x Now the area between the curves
| f(u)du=dx is given by
1o B x x=0 = u=0 s 5
| ¥=p = u=p IRCERNOE
0 ]
Hence

Lpf“(x) dx =J:u FHu) du

(i) y==xsin”x hasdomain ~1Sx<1

ﬂ=sin"x +x. ., —l<x<l
dx 1-x*
-1
sin”'x
For O<x«<l
1"11 1 =t X
tan(sin™ x)=
™ 5)=
x

For —1<x<0, O<-x<l=

ENRIR

X

= = l:an(sm“1 x)
- X

Also tan(sin™0)=tan0=0

X
V- x?
&

. -&%:sin—lx + tan(sirf1 x)

Hence =tan(sin"l x) , —l<x<l

)

d - -
D_oo= tan (sin™ x) = ~sin™' x
dx

~-l<x<l = -Z<sin™x<%
Jence for stationary points, sin” x=8

— A i3
where tanf=-6 , -5 <6 <%.

=J':x Fx) ax —J:f(x) dx

B
:.A:J. {xp(x)-f(x) } ax

(b) (ii) cont.
4
vt y=tanf

| l

| [

l I

—%_: 0 'z 9

I

I y=-6

Since solutions are 8  values at points of intersection
of the graphs shown above, only solution 1s 8 =0.
But 6 =0 =sin"x=0 = x=0, hence

y= xsin” x . has exactly one stationary point , and
this point is (0, 0). -

x<0 = $in x<0 and tan(sin™x) <0 :%<0

dy

x>0 = sin" x>0 and tan(sin"x)>0 =L >0
dx

Hence (0, 0) is 2 minimum turning point.

!
y=xsin"x

I A

(1. %) Y (1, %)

Vertical | | Vertical

tangent | | tangent
0 Vx

Question 1 (cont)
(b)v)

e

yi.f-l(x) (sinl,sin1)

y=f(x) -
0[ 'x

The curves y= f(x), y= f"(x) are reflections
intheline y = x, and hence their points of
intersection lie on the line y= x.

The curves intersect where

xsintx=2x
x(sm'lx—l)=0
x=0 o sin"'x=1

x=0 o x=sinl

Question 2

2
Hence the two square roots of 2i are

:*:w/:’)._(cos—} +ism%)=i-(1+i)

@ () 2i=2(cos & +isin)

() x*+2x+(1-%i)=0
A=4-a{1-}i)=2i

Using the quadratic formula x = ——b-zi.—[}— ,
a
2+ ;
LoT2x(+)
2

x==2(3+1), o x=1(-1+i)

)

= tan &

f=tanj s 2t

—smx:l——-—-z—

:ll=%sec“2'~dx 1+t
_1 141 -21¢

it—-§(1+t2)dx ="—l‘r
2

—d = -1)?

1+ dx =___(i t)z

r=0=>1=0 1
X 1 1+7

rE3mIsy 1-sinx  (1-1)7

1(b)(v) Using (a), and

I x f(x) = x{sin"‘ X+ 711—2-}
-x

x2

= xsin™x +

1-x*

sinl

A= j:nl{xf’(x)—f(x)}dX= [M e

o V1-x?
_-725 SBS% Jdinl xz 0
x=s1nf . -
dx=cosf db fl sin?8 st db
= = = s
x=0= 6=0 , cosf
1

x=sinl =0 =1

o ~ sin’@ =%J(l—w829) de
1-x* +cos?@ 1 ’
sin :7[6 ——2-511129]
"~ cos 6 =1(2-sin2)

e™* 4¢
(ii) jte“' dt:-te"‘-kje" dt
=—te'~e +c

(i) stax dx=fcosx(1—sin2x) dx

=sinx —4sin’x +c

.2

1 e?
C ""“"dle l = —_ =
()L Ty [n(nx)]e In2-Inl1=1In2

51
j 1-sinx &
° 2{~—1——1}

B B o

=) mrTE de
0751—1) 141 {ﬁ(ﬁﬂ)_l}
= Jj(l—z)‘2 dt

=2[(1-1)"] f’




Question 2 (cont)

(@ .
x+ -x
TN sy
+e

=jldx
0

=1n2

Question 3

@ C e
= (1+2i)* =3+ 4i
3%4i"
T34
- (B+4)(3-0)
o1
=5+15i

8

3 FL,=

Il’-_J—_—jme:*w: i
o & Te
= [ln(e" +e "‘)] l:Z
=In(2 +1)~1n2
I-J=m(3+2)=In%

O
JE+i=2 (—‘2—3-4—%1')
z =2(cos 24 ism%)
(b} (i)
"= 2"(005%+ism365)
7" =2""(cos!'-g5—isinﬂ6£)

2" +2"=2".2 cos

Hence z" +Z”
n is even or amultiple of 3.

J+J=In2
I——J=ln§1
=1n(2><.§.) I=2LIn

27=n(2+3)

cos ﬂg— is rational when

_.’.‘62_. Z | kintegral
or "—g‘-:k—g , k integral

(b)(iii) n=4 is the smallest

positive integer for which

cos 7& is rational and

negative. Hence n=4 and

18 rational when

(€) () Let z=x+iy
az=(p+ig)(x+iy)
=(pr—qy)+i(gx+py)
Re(wz)=1= px—gy=1
Hence locus of P is thelinepx —gqy =1.

(0¥

by

0PQ =90° (£ in semi — circle is rt angle.)
arg(z—a)—argz=1%
-0

= Iki, k‘integral
z : : -
Hence = &l 18 imaginary and Rc( z ) =0.
BT Ty TR p
But Re( Z-?‘) ——-Re(l—g):l—Re(g)
2 z z

-+ Re[

2%)20 = R L)=Re[a l] =1

247 =2%cos F =16

{c)(iii) If P lies on circle with diameter (2, where
O(p, q) represents. o= p-+iq, then from (ii)

Re(a -l—) =1 and hence from (i), the point
z

representing % lies on the line px —gy=1.

(©@v)

2x-2y=1
The locus of z is the circle with centre (1,1) and
radius /2 . Its diameter is OQ as shown.
1
Since Q has coordinates (2 ,2), the locus of —
z
is the line 2x—2y =1, using (iii).

Theline y=—x is perpendicular to OQ ~and
hence is tangent to the circle at O,

Fid 3x
—F <argz <=

Question 4

(i) For the hyperbola Hye,

bz=a2(e 2—1) o
2 2 2

e = b__’_1 - b*+a
a® at

If the ellipse £ has eccentricity ¢ ,
b= (ot +5)1-e ).

-
£l=l- 55—
a”+b
et a* 1
) a+b* el -

Hence the ellipse £ has eccentricity 2

(ii) Since a®+b*=qa’¢*, the equation of the ellipse
LY
bz
One focus of  is S (ae, 0), and this point clearly
lies on the ellipse £ .

One focus of the ellipse is T(ae 5 0) =T(a,0)

and this point 1s clearly on the hyperbola #..

. X
can be rewritten as ——5 + =1
a‘e

(iii) Hyperbola #( has foci S(ae,0), §'(-ae,0)
and directrices x = 9— x=-Z
e

Ellipse £ has foci T(a 0), T'(~a,0) and

ae )
directrices x=m =ae’, x=-ae’.
e

. X y
(vi) Hyperbola # : — — Z- = i
) Hyp g~ g =L with
eccentricity e givenby 9= 16(32 ~l) = g:%,
x2 y2
andellipse £ : — + — =1 i
p > 5 are two such conics.

Usmg the symmetry 1n their graphs, at all of their
points of intersection, the acute angle ¢ between the

tangents to the curves is given by tan o = N2 (Z -5-)
Hence & =71° ( to the nearest dégree)

(iv) Where the curves intersect,

xl y2
s "yt @
xl yZ
e Ty Tt @
2
x 2\
O+2) = a_l?.(e +1)=2
2
2 - Y (2 2
e?x(2)~() = - (e +1)—-e ~1
2
b2=az<ez—l) :)ﬂe‘)-,z.*—])(ez‘l"l):e:*l
2
L atP, x=ae 22 s y=a(e —1)
e’ +1 e* +1
For the hyperbola, at P
x J
P
z _d
a® b dx
cdy b x N
o E = ZZ—; =(e ——1)';= Jie
For the ellipse, at P
x y .
a*e? o
2 2ydy
a’e’ b dx
dy _ 0 x e’—1)x 5 1
dx a*d y ¢y P

Hence the gradients of the tangentsto #f and £
at Pare 2e and —+2 3 respectively.

‘\/Z_e (—'\/—1) €+-l-
1+J_e( f‘) 1-2
RN tana::ﬁ(e+—e—)

(v) Forthe hyperbola #, e>1
2
(e+%) =( ~-§v)2+4 =>(e+—}-)2>4
and (e+é)2—>4 as e-—>1".
. (e+-},—)>2 and (e—l—-;-)—)Z as e—1"
Hence tan o >2,/—2- = o >mn'1(2ﬁ),
and a-»tan”(zﬁ) as e —1".




Question 5

@ SV =2/6). 50
Stationary points on y={f(x)}"* occur when
gx-y- =0, thatiswhen f(x)=0 or f'(x)=0.

(b)

,:;l
o
Sk
I L
12 ¢ x

Parabola, with axis of symmetry
x=2 andvertex (2,4)

y={7()} wheref(x)=x (4-x)
f{x)=0 = x=0,x=4

F(x)=0 = x=2

Hence y= x*(4— Jc)2 has stationary points
at (0,0) , (4,0), (2,16) , from (a).

-gc—{f(x)}z >0 when f(x), f'(x) have same sign

-;;-{f(x)}z <0 when f(x), f'(x) have opposite sign

0 + 0 - 0+
0 2 4 x
NV N\

sign of -Z—:

Hence stationary points have nature shown in the
diagram.

y 4 | ) )
=x(4-x
6l y=x(4~x)
|
|
I
| -
0 2 l 4 x
x=2
v Axis of symmetry

(C) (1) o, X, xX,, ﬁ Satisfy y= x2(4.—x)2
y=x(4-2)" = »*(x*~8x+16)-y=0
Hencecx, x,, x,, B areroots of

x*~8x° +16x" ~y=0.

(ii) Since x =2 is an axis of symmetry for the
parabola and hence for y= x*(4— x) .2 isthe
midpt of the interval between x, and x, , and of
the interval between o and § .

X tx, _o+B -
2 2

Hence x, +x, =0+ f§ =4, and
O=afx +afx,+xx,0+xx,8
0=(x1+x2)aﬁ +(06+,3)Jc1xz
O=4af+4xx, > af =—xx,
Then

2
=y =afxx,= _(xlxz) = x'lxzzﬁ
and (ch—)cl)2 =(x7_+x1)2 ~4x.x, =16—-4.fy

X, >x1=>x2—x1=‘/16—4‘/)7:2‘/4_‘/;

(iii) The sljce has volume
§V=m (xz? —xiz) 8y

6V=7t(x2+x1Xx2—xl)5y

=87 \4—Jy 8y
Hence
16
V= lim %87:,/4—‘5 5y
16
=87£J Ja=Jy @y
0

0
y=(4-u)’, us4 V=8ﬂju% =24 —u)du
4

4 3
y=0= u=4 =16m (4u2—u2) du
y=16 =u=0 o

3 574
4-Jy=4-(4-n) =16n[§uz_§uz]
0
Ja-Jy =u
Wy =167 (% —£)

. 2048 . .
Hence volume is cubic units.

juestion 6

Forces * " Initial conditions
- {x =0
+ve t=0 =
direction v=0

" Equation of motion

mg mk’:mg-—ll-dmv2
x
¥=10-5v?
10X =100-v*

ofind x intermsof v :

dv?

5 =100~v?

1 dx - 1
5 d(v*) " 100-v?
_%xr.]n{(lOO—vz)B}, B constant
jjg} = (l00B)=0 = B=k
~4 x=In{g(100-v?)}

x =—51n{1—(—1—%)2}
) Parachute disintegrates when =21n2
e —1
V=10 e
(e My 1)

4
1=2In2 = v=10[ 2 1] =
271

x=-5 In{l (—1%) 2}
(

2
8)’}=10my

_
slg

1=21n2 = x=——51n{1-

Just before parachute disintegrates, speed is

1% ms™, and distance fallenis _ 10Ini m.

Tofind v intermsof ¢ :

10ﬂ=100—v2
dt

Lar_ 1

10dv  (10+v)(10~v)
dt 1 1
e e O —
dv (10+v)  (10-v)
2t=ln{10+v A} , A constant.

10~v
t=0

}=:> InA=0 = A=1
v=0

2[=ln{10+v}
10-v
0¥ 10+v
10—v
e¥(10-v)=10+v

10 (¥ —1)=v (e *+1)
e’ ~1
= lo(e” +l)

(ili) After parachute disintegrates, ¥ =10.
1 dv? 10

2 dx

v?=20x+c , ¢ constant

y=10 2
;7 - =>(lf5,-7g =200 lnlg +c
n

v - (32)" =20x-200 14

x=40 = v =(12)" 1800200 1n
v ~26-96

At base of cliff, speed is 27ms™ (to 2 sig.fig).




.- Question 7
(a)(i) ¥*+px~1=0 hasroots a, B,y

=(a+B+y ) =2(aB+Py+y a)
a2+ﬁ 2+72=0_2p=_2p

ot Byt

Sincecr, B, vy are non-zero and real, —2 p>0
and hence p < 0. o

a, B,y eachsatlsfy x+px—-1—0

x =~px +Xx
a'=-pa’+a
B'=-pB*+B
v i=-py’+y

o+ By t=—p(at+B 24y )+ (a+B+y)
a’+B+y *=2p*+0 =2p*

(b)(i) For n=1, 2, 3, ..
1
1n=j(x2-1)” dx
0

[x (# -1)" Zan )" i

=0 znf(x —141) (=)

= on[ (-1 4 (o)
0
=25 (In +1n-1)
@n+1)I,=-2n1,_,

-2nl, _,
2n+1

n

.. ' 2 [=-2
(it) I°=J01 dx=1=>11=m 0= 73
Forn=1, 2, 3,..

let $(n) be the statement

7 = D2 ()

" (n+1)!
D2ty -4 _ 5, _,
e+t 3x2 3%
- S(1) is true.

(2 (ii)

o o 2
=1 = —= =0
By By aBy
s _&z 2 Y =2
similarly v B, 2B Y

Required equation hasroots e, 82, 2.
a’+B*+yi=2p
2(a2ﬁz+ﬁ 2)/2+}’7'06 z)
=(a2+[32+72)2—(a"+ﬂ ‘)
=(—2p)z—(2ﬁ2)
a2ﬂ2+ﬂ2,)/2+,y2a2=p2
a’pryt=(apy)=1

Hence required monic equation is
X +2pxt +ptx—1=0.

(b) ii) (continued)
‘ (1) 2% (k)*
If S(k) istrue, I, = "*‘(27;1)'— *%

Consider S(k+1), k some positive integer.

=2(k+1)
20k+1)+1 ™"
_ 2+ Ent2t(r)?
2k+1)+1  (2k+1)!
(DR k1) (k)
B (2k+3)(2k-+1)!
_EDERP 2k +2) (k1)K
T (2k+3)(2k+2) (2K +1)!
N (__1) k+122(k+1)(k+1)2(k!)2
B (2k +3)!

(_1) k+122(k+l){(k +1) !}2
RSP

1=

if S(k)is true
using * *

Hence if S(k) is true, then S(k+1) is true.
But (1) 1s true, hence $(2) 1s true and then
8(3) is true, and so on. By Mathematical
Induction, §(n) istrue for n=1, 2, 3, ...
(=1)" 2" (n))*

Hence I = (2}1 " l) !

for all positive

integers n.

—

Question 8

@)

e’

(a)(ii) Construct AO. Then

ABO= 000 <L between tangent AB and radius

OB at point of contact B is 90°,
Similarlly ACO =090°
< ABOC'is cyclic (one pair of opp. £'s add to 180°)
AGO = 90° line from centre O 1o midpt G of

chord DE is perpendicular to DE
Then AGO= AC0 =90°

. . £'s subtended by interval AO
. AOGCiscyclic .
at C, G on same side are equal

(b))
y=x"+{c-x)*

D xt g (o x)t
dr

. dy c
.. 8ine >0, ZL=0= =2
nce ¢ p o

1ence y hasa single stationary value at x = %—cA

dy k-1 k-1
L=k —k{c—
= kx {c—x)

A - -
lx_fzk(k—l)x" Pk(k-1)(c~x)*

dZ

=L
=5C =

7 =2k(k~1)(4c)"

d*y .
<k<l = EZ—<O =y has max. at x=3c¢

2

k>l = dxi)>0 =y has min. at x=1c

k 13 k
L 0<k<l =» £.*5° +b <(a+b)

(a)(iii) Construct BC and BF.
£ between tangent AB and chord
BFC = ABC| BC is equal to ZBFC in alternate
segment in circle BFEC

" A~ [ £'S subtended at circumference of
ABC=AOC| "
circle ABOC by arc AC are equal
o o [ £ s subtended at circumference of
AOC= AGC| |
circle AOGC by arc AC are equal
* BFC= AGC
- BFI ADE ( equal corresponding angles)

ontransversal FC

(b)(ii) )
Let c=a+b, a>0, b>0, a#b
Consider y=x"+(c—x)", k>0, k=1,
From (i), for 0<x <c,

O0<k<1= y hasamaximum value of
(%c)k +(c—%c)k =2 (%—c)k when x = 1c.

O<k<l = x"+(c—x)"<2(%c)k for xedc

a"+(c—a)k<2(é—c)k (a;é%c)

2 2

k>1 =y hasaminimum value of

(%c)k +(c—%c)k =2 (%c)k

k>1 = x* +(c-x)* >2(%—c)k

when x = %—c.

for x #Lc
(a#%c)

a* +(c-a)* >2(%c)k

k k k
k>l = a___—i—_b__>(a+b)
2 2




