MEASUREMENT OF PLANE FIGURES

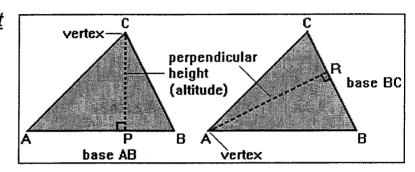
PERIMETER – A measure of the "length around the boundary" of a closed plane figure. It is simply the total of the lengths of all the sides of the figure.

AREA - A measure of the "size of the inside" of any closed plane figure. Found by calculating the equivalent number of 'one unit' squares that would fill the inside

AREA of a TRIANGLE:

 $Area = \frac{1}{2} \times base \times perpendicular height.$

- where the perpendicular height (or altitude) is the perpendicular distance from any vertex to the side opposite.
- and the base is the length of the side opposite the chosen vertex.

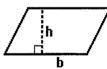


AREA of QUADRILATERALS:

For all rectangles, squares, parallelograms and rhombus's we have:

$$Area = base \times perpendicular height.$$

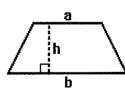
ie.
$$A = b \times h_{\perp}$$



For a trapezium the area is:

Area = Average of the 2 parallel sides \times its perpendicular height.

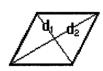
ie.
$$A = \frac{1}{2} \times (a + b) \times h_{\perp}$$



A rhombus also has the formula:

Area =
$$\frac{1}{2} \times product \ of \ the \ diagonals$$
 ie. $A = \frac{1}{2} \times d_1 \times d_2$

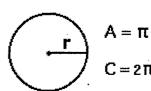
ie.
$$A = \frac{1}{2} \times d_1 \times d_2$$



AREA of a CIRCLE

The area of a circle is found by multiplying the square of the radius r^2 by π (pi).

The perimeter of a circle is called its *circumference*. The circumference is = $\pi \times d$ (d is the diameter).



EXERCISE 24 – Area and Perimeter

Find both the area <u>and</u> the perimeter of the plane figures below - measurements are all in centimetres (cm):

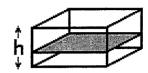
2. 1. 20 _ 130 14 Area: _____ Per: ____ Area: _____ Per: ____ 17 4. 3. 13 Area: _____ Per: ____ Area: _____ Per: ____ 6. 5. 20 Area: _____ Per: _____ Area: _____ Per: ____ 7. 13 8. 20 20 🖛 20 Area: _____ Per: ____ Area: _____ Per: ____

SOLIDS

PRISMS:

These are solids with a uniform *cross-section*.

Their <u>volume</u> is calculated by multiplying this cross-sectional area × their height (length).



$$V = Area \times height$$

They are named according to the shape of the uniform cross-section.

eg. If the cross-section is a triangle – it is a "triangular prism"

If the cross-section is a rectangle – it is a "rectangular prism" (see diagram)

*If the cross-section is a circle – it is a "cylinder" (see diagram)

The total <u>Surface area</u> of a prism is calculated by multiplying the perimeter of the cross-sectional area by the height and adding to it 2×10^{-5} this cross-sectional area.

$$SA = (2 \times Area \ of \ cross-section) + (perimeter \ of \ cross-section \times height)$$

RIGHT PYRAMIDS:

These are solids with a base and a vertex (sometimes called the "apex")

The volume of all pyramids is given by:

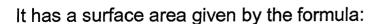
$$V = \frac{1}{3} \times Area \times height$$

Finding the surface area of any pyramid involves calculating the total of the areas of each of the faces of the chosen solid.

THE SPHERE:

This solid has a volume given by the formula:

$$V = \frac{4}{3} \pi r^3$$



$$SA = 4\pi r^2$$

EXERCISE 25 – Properties of Solids

Complete the table below:

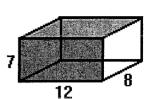
Solid	Name	Number of Surfaces, S	Number of Edges, E	Number of Vertices, V

Find the value of: E - (S + V) + 2 = ? for the last 2 figures! Test this result for a (i) triangular prism and (ii) a triangular pyramid?

EXERCISE 26 - Area and Volume of Solids

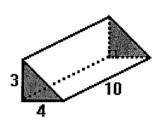
Find both the volume and surface area of the solids below:

1.



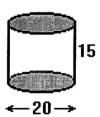
Volume = _____ Surface Area = _____

2.



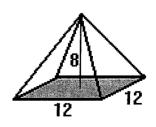
Volume = _____ Surface Area = _____

3.



Volume = _____ Surface Area = _____

4.

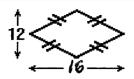


Volume = _____ Surface Area = _____

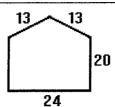
HOMEWORK SHEET (10)

All measurements in cm.

1.



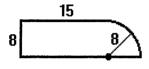
2.



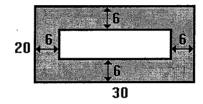
Area = ____ Perimeter = _

Area = Perimeter =

3.



4.



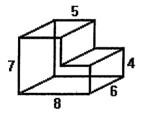
Area = _

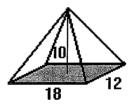
Perimeter =

Area =

Perimeter =

5.





Volume = _____

Surface area = _____

Volume = _____

Surface area = _____

ANSWERS

Exercise 24

1. $A = 3000 \text{ cm}^2$	
----------------------------	--

P = 300 cm

$$2. A = 196 cm^2$$

P = 68 cm

3.
$$A = 32\pi \text{ cm}^2$$

 $P = (8\pi + 16)$ cm

4.
$$A = 135 \text{ cm}^2$$

P = 50 cm

$$5. A = 300 cm^2$$

P = 76 cm

6.
$$A = (50\pi + 1000) \text{ cm}^2 \quad P = (10\pi + 120) \text{ cm}$$

7. A =
$$(800-49\pi/2)$$
 cm² P = $(7\pi+106)$ cm

8.
$$A = (400-64\pi) \text{ cm}^2$$

 $P = (16\pi + 16)$ cm

Exercise 25

hemisphere	2	1	0
cylinder	3	2	0
cone	2	1	1
rectangular prism	6	12	8
right square pyramid	5	8	5

Exercise 26

1.
$$V = 672 \text{ units}^3$$

 $S.A. = 472 \text{ units}^2$

2.
$$V = 60 \text{ units}^3$$

 $S.A. = 132 \text{ units}^2$

3.
$$V = 1500\pi \text{ units}^3$$

S.A. = 500π units²

4.
$$V = 384 \text{ units}^3$$

 $S.A. = 384 \text{ units}^2$

HW-Sheet (10)

P= 40cm

P = 90 cm

P=152 cm

SA=274 cm2

6. V=720 cm3 SA ≈ 587.3 cm2