—Name⊱		

Teacher:

An Anglican School for Girls

2006

Year 12

Mathematics

Time Allowed - 2 hours (Plus 5 minutes reading time)

(This examination paper does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject)

Assessment Task #2

Weight:

Outcomes examined: P2 P3, P4, P6, P7, H2, H3, H4, H5, H6, H8, H9

DIRECTIONS TO CANDIDATE:

- Attempt all questions.
- Start each new question in a new booklet.
- Show all necessary working otherwise full marks may not be awarded
- Marks may be deducted for careless or badly arranged work.
- All questions are of equal value.
- Approved calculators may be used.
- Write your name on this paper.
- A table of standard integrals is provided on the back page.

	Ques	tion 1	(10 marks) (S	tart a new booklet)	<u> </u>
	_	Fastar	ise fully:		
	a.	i.	$x^3 + 27$		1
		•			
		ii.	$a^2 - n^2 + 3a + 3n$		2
	ъ.	Solve	he following:		2
		i.	2x+5 =9		2
		::	$(x-3)^2 = 16$		2
		11.	(x-3) = 10		
(,	c.	Find th	e exact value of	$t + \frac{1}{t}$ given $t = 3 - \sqrt{5}$	3
				•	
	Ques	tion 2	(10 marks) (St	art a new booklet)	
	 	2\ D(a an <i>- ci</i> ca - 1 1 a	$\operatorname{nd} \overline{D}$ are the vertices of $\overline{\mathbf{a}}$	
	A(-l, parall		with AC as diagon		
	_		•		1
	i.	Plot the	points and write	flown the coordinates of D	
		73. 4.4	1 4 CDG		1
	ii.	Find th	e length of BC		1
	iii. Show that the gradient of BC is $\frac{1}{5}$				1
ج)	111.	DIIO	iai aio Brancisto or	5	
C 7	iv.	Show tl	nat the equation of	the line BC is $x - 5y - 7 = 0$	1
	ν.	Find the	perpendicular dis	tance from A to BC	1
	,.		1 1		
	vi.	State the	e definition of a pe	rallelogram and use it to	3
s	, 2-				
		determi	ne the equation of	A.U.	
	vii.	Find the	area of the paralle	elogram ABCD	2

Question 3 (10 marks)

(Start a new booklet)

a. Below is the graph of y = f(x) for $-2 \le x \le 4$

3

Use two applications of the Trapezoidal Rule to approximate the area enclosed by the curve, the x axis and the lines x=0 and x=4.

b. Differentiate:

i.
$$v = e^{x^2+3}$$

1

ii.
$$f(x) = (x^3 + 2)e^{-2x}$$

3

c. Bricks are stacked in a pile such that there are 20 bricks on the top row, 21 on the next, 22 on the next, and so on until 245 bricks in total are in the pile.

i. How many rows are there?

3

ii. How many bricks are in the bottom row?

Question 4 (10 marks)

(Start a new booklet)

1

3

2

- The gradient of a curve is given by $\frac{dy}{dx} = 3x^2 6x 9$
 - i. The curve passes through the point (1,-2), show that the equation of the curve is $y=x^3-3x^2-9x+9$
 - ii. Find the coordinates of the stationary points and determine their nature.
 - iii. Find the coordinates of the point of inflexion.
 - iv. Sketch the curve, make sure you show its stationary points, point of inflexion and y-intercept.
- b. The limiting sum of a geometric series is 30.

 Give a possible example of a geometric series that fits these conditions.

Question 5 (10 marks) (Start a new booklet)

- a. Consider the curve $y = 2 + e^x$.
 - Find the equation of the tangent to the curve at the point when x = 0
 - ii. Without the use of calculus sketch the curve $y = 2 + e^x$. 3 On your graph also show the tangent at x = 0, clearly showing its x and y intercepts.
 - iii. Find the area of the region between the curve $y=2+e^x$ and the tangent, from x=a to x=0, where a is the point of intersection of the tangent and the x-axis.

b. The diagram below shows the graph of $y = x^2$ and $y = (x-2)^2$ 2

Fiona needs to calculate the area enclosed by the two curves and the x-axis. Explain how she would go about this, include any definite integrals she would need to evaluate in your explanation. **DO NOT DO THE CALCULATION.**

Question 6. (10 marks) (Start a new booklet)

a. The area between each loop of the curve x = g(y) and the y-axis is shown on the diagram below.

Use this information to find the value of:

i.
$$\int_0^2 g(y) dy$$

ii.
$$\int_{0}^{\infty} g(y)dy$$

iii.
$$\int_{-x}^{2} g(y) dy$$

- 1
- b. In the figure, ABCD is a parallelogram. CD is produced to E so that AE = ED and is $AE \parallel BD$. Let $\angle AED = x$ and $\angle EAD = y$.

- i. Copy the diagram and mark on all the data.
- 1

ii. Prove that Δ DBC is isosceles.

- 3
- c. The curve $y = \frac{1}{x}$ is rotated about the x-axis between
- 3
- x=1 and x=2. Use Simpson's Rule with three function values to estimate the volume of the solid formed.

(Start a new booklet) Ouestion 7 (10 marks)

- Below are four integral statements. Select the correct statement needed to answer the following problem.
- 1

- I. $\int y dy$ II. $\pi \int y^2 dy$ III. $\int x dx$
- IV. $\pi \int_{0}^{4} x^{2} dx$

1

Find the volume generated when y = x is rotated about the y-axis between y = 0 and y = 4.

- A woman borrows \$20 000 at 18% p.a. reducible interest, and pays it off in equal monthly instalments.
 - Express the interest rate as a monthly rate in decimal form.
 - Show that the amount she owes at the end of the second month is
 - $A_2 = 20000(1.015)^2 1.015M M$

where M is the monthly repayment.

- Write an expression of A_n , the amount owed after n months.
- Find the amount of the monthly repayment if she repays the loan in 5 years.
- Find the volume of the solid formed when $y = e^{3x}$ is rotated about the x-axis, from x=0 to x=2. Leave your answer in exact form.

(10 marks) (Start a new booklet)

Differentiate $y = (e^x + 1)^5$

Hence evaluate $\int_{0}^{1} 20e^{x}(e^{x}+1)^{4} dx$

- 3
- A soft drink company is designing a drink can to hold 500 ml, in the shape of a closed cylinder.

The metal used on the side of the can will cost $2 \text{ cents} / 100 \text{ cm}^2$. The metal used on the top and bottom of the can will cost twice as much. Let the radius of the can be r cm and the height be h cm.

- Show that the total area of metal needed to make the can is given by

$$A = \frac{1000}{r} + 2\pi r^2$$

If C is the cost (in cents) of making the can, show that:

$$C = 0.02(4\pi r^2 + \frac{1000}{r})$$

- Find the dimensions of the can so as to minimise the cost.

1

END OF PAPER

	Andrian Angula Andrian Propinsi Andrian Angula Andrian Angula Ang
$\frac{Q6 \cdot \text{conf. C}}{2} \text{h = b-a} \text{iv)} \Lambda = 5 \times 12 \text{offic conf. :} b) i) Area = 2\pi r^2 + 2\pi r h$	оновитическом
$=\frac{2-7}{2}$ After 60 months $A_n = 0$ $Vol = \pi \left[\frac{e^{6x}}{6}\right]^2$ but $e^{6x} = \pi r^2 h$	- I
$ = \frac{1}{2} $	no-enable-littic/teabassassas
	- A
7 = 1015 $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$ $1 = 4%$	C) 1
$S_{60} = \frac{1(1.015^{60}-1)}{1.015-1}$	Control of the contro
$= \frac{1/2}{3} \times 4 \frac{1}{6}$ $= \frac{1.015}{60} = \frac{1}{100}$	1
$\frac{23}{36} \text{ Units}$ $\frac{20000 \times 1.015^{60} - M(1.015^{60})}{(1.015^{60})} = \frac{10000 \times 1.015^{60}}{(1.015^{60})} = \frac{100000 \times 1.015^{60}}{(1.015^{60})} = \frac{1000000 \times 1.015^{60}}{(1.015^{60})} = \frac{100000 \times 1.015^{60}}{(1.015^{60})} = \frac{1000000 \times 1.015^{60}}{(1.015^{60})} = \frac{1000000 \times 1.015^{60}}{(1.015^{60})} = \frac{1000000 \times 1.015^{60}}{(1.015^{60})} = \frac{1000000 \times 1.015^{60}}{(1.015^{60})} = 1000000000000000000000000000000000000$	rine:
$= 2.02 \left(\mu \pi r^2 + \mu \pi $	
0.015 0.015 $\sqrt{\sqrt{2}} \sqrt{5}$ $\sqrt{\sqrt{2}} \sqrt{5}$ $\sqrt{\sqrt{2}} \sqrt{5}$	=0 8 d c >
$M = 20000 \times 1.015 - M$ $M = 20000 \times 1.015 \frac{60}{x} 0.015$ $(1.015^{60} - 1)$ $= 4 \left\{ (e + 1)^{5} - (e^{0} + 1)^{5} \right\}_{\frac{1}{2}50h}$	1000.
$A_2 = A_{1} \times 1.015 - M$ = 507.8685 = 45(e+1) - 25 } {end or or	ALL CONSTRUCTION AND ADDRESS OF THE PROPERTY O
$= (20.000 \times 1.015 - M) \times 1.015 - M = 507.87 $= 20000 \times 1.015^{2} - 1.015M - M$ $= 4(e+1)^{5} - 2^{2} \times 2^{5}$ $= 4(e+1)^{5} - 2^{7} \times 2^{5}$ $= 4(e+1)^{5} - 2^{7} \times 2^{5}$) = 0 ½
$ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$ $ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$ $ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$ $ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$ $ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$ $ A_{n} = 20000 \times 1.015 - M(1 + 1.015 + 1.000)$	ETTELL'S TOTAL SHEET SHE
817	

$$\frac{d^{2}C}{dr^{2}} = 0.02 \left(8\pi + \frac{2000}{r^{3}}\right)^{1}$$

$$\frac{d^2c}{dc} > 0$$
 ... min ... when $r = \frac{5}{4\pi}$

$$h = \frac{500}{11 \times 25}$$

$$= \frac{500}{\sqrt{11} \times 25}$$

$$= 20$$

$$= 13.6$$