- 1. Find the minimum value of the function $f(x) = x^2 - 4x + 1$
 - A) -8 B) -4 C) -3 D) 2
 - E) 3
- 2. In which one of the following intervals is the function $f(x) = x^3 - 3x^2 + 1$ decreasing?
 - A) (∞.0)
- B) (0,2)
- (0.1)

- D) (-2.0)
- E) $(2,+\infty)$
- 3. What is the minimum value of the function $f(x) - 2x^3 - 3x^2 - 12x + 1$ in the interval [0,3]?
- B) -17
- C) -13
- D) 8 E) 9
- 4. Find the coordinates of the point at which the function $f(x) = x^3 + 2x^2 - 4x + 3$ takes its maximum
 - A) (-2.11)
- C)(3,6)

- D)(2.10)
- E) $(-2, \frac{2}{2})$
- 5. If the function $f(x) = mx^3 + (m-6)x^2 + 3mx$ has a maximum at $x = \frac{1}{3}$, find the value of m
 - B) 2 A) 1
- C) 3
- D) $\frac{1}{2}$ E) $\frac{3}{2}$
- 6. If the function $f: \Re \to \Re$ $f(x) = -x^3 + mx^2 + nx$ has a local maximum at (2,4), find m.
 - A)0
- B) 1
- C) 3
- D) 4 E) 5
- 7. The function f is defined as $f:[0,2\pi] \to \Re$, $f(x) = \frac{1}{2}\sin 2x + \cos x$. Find the interval where the function decreases.
 - A) $\frac{\pi}{6} < x < \frac{\pi}{2}$ B) $\frac{5\pi}{6} < x < \frac{3\pi}{2}$ C) $\frac{\pi}{3} < x < \frac{3\pi}{2}$ D) $0 < x < 2\pi$
- E) $\frac{\pi}{2} < x < \pi$

In the figure, the graph of the derivative function f ' of the function f is given. In which interval is the function f increasing?

- A) -2 < x < 2
- B) x > 2
- C) x < -2
- D) (x < -4) V(-1 < x < 3)
- E) (-4 < x < -1) V(x > 3)
- Which one of the followings is true for the function $f(x) = 2x^3 + 3x^2 + 12x + 1$?
 - A) It's value is maximum at x = 2
 - B) It's value is minimum at x = 1
 - C) It has an inflection point at x -
 - D) It is an increasing function
 - E) It is a decreasing function
- 10. If the function $f(x) = 2x^3 + ax^2 + bx + c$ has an inflection point at $x = -\frac{1}{2}$, find the value of a
 - B) 2 A) 1
- C) 3
- D) 4
- E) 6
- 11. In which of the following intervals is the function $f: \Re \to \Re$, $f(x) = x^2 \cdot (x+3)$ concave down?
 - A) $(-\infty, -2)$
- B) (-2,0)
- C) $(0,+\infty)$
- D) $(-\infty, -1)$
- E) $(-1,+\infty)$
- 12. If point (a, b) is the inflection point of the function $f(x) = x^3 - 3x^2 + 4$, find a + b.
 - A) 1 B) 2
- C) 3

D) 4

E) 5

13. The graph of the derivative of the function f(x) is given. Which of the followings is false?

- A) The function f(x) has a maximum at x = 0.
- B) The function f(x) has a minimum at x = 2.
- C) The function f(x) is a third degree function.
- D) The function f(x) is increasing in (0,2).
- E) The function f(x) has an inflection point at x = 1
- 14. Which of the followings is false for the function given in the figure?

- A) The function is a decreasing function in [-3,-1]
- B) The function has local extremum points at
- (-1, f(-1)) and (2, f(2))
- C) The point (1, f(1)) is an inflection point
- D) f''(x) < 0 in (-1,2)
- E) f''(x) < 0 in (2,3)
- 15.

- Which one of the followings is false for the function f given in the figure?
- A) f'(0) < 0
- B) f(d) > 0
- C) f'(a) = 0
- D) f''(c) = 0
- E) f'(b) > 0