EXERCISE 12G

EXPONENTIAL GROWTH AND DECAY 2

- 1. The number of bacteria N in a colony after t minutes is given by $N = 10\ 000\ e^{0.05t}$. Find
 - (a) the number of bacteria after 10 minutes;
 - (b) the time required for the original number to double;
 - (c) the rate at which the colony increases when (i) t = 10
 - (ii) N = 20000
- 2. The charge, Q units, on the plate of a condenser t seconds after it starts to discharge is given by the formula

$$Q = Ae^{-kt}$$
.

- (a) If the original charge is 5 000 units, find the value of A;
- (b) If $\frac{dQ}{dt} = -2\,000$ when Q = 1000, find the value of k;
- (c) Find the rate of discharge when Q = 5000.
- 3. The rate of increase in the number N of bacteria in a certain culture is given by $\frac{dN}{dt} = 0.15N$ where t is the time in hours.
 - (a) If the original number of bacteria is 1 000, express N as a function of t;
 - (b) After how many hours has the original number of bacteria doubled and what is the rate of increase at this time?
- 4. A population of size N is decreasing according to the law $\frac{dN}{dt} = -\frac{N}{100}$ where t denotes the time in days. If initially the population is of size N_0 , find to the nearest day how long it takes for the size to be halved.
- 5. A radioactive substance decomposes at a rate that is proportional to the mass present at any time. If 10 per cent decomposes in 200 years, what percentage of the original mass will remain after 1 000 years?
- 6. A vessel filled with liquid is being emptied and the volume V cubic metres remaining after t minutes is given by $V = V_0 e^{-kt}$.
 - (a) Show that $\frac{dV}{dt} = -kV$.
 - (b) If one quarter of the vessel is emptied in the first 5 minutes, what fraction remains after 10 minutes?
 - (c) At what rate is the liquid flowing out
 - (i) after 10 minutes
 - (ii) when one quarter of the vessel is empty?

1

ANSWERS

- 16 487 $\frac{9}{16}$ 1. (a) 6. (b) 13.86 min (b) 824/min $0.032 V_0 \quad \text{m}^3 / \text{min}$ (c) (i) (i) (c) (ii) 1 000/min $0.043 V_0 \quad \text{m}^3 / \text{min}$ (ii) 2. (a) 5 000 7. (a) 80 $51 \cdot 25^{\circ} C$ (b) 2 (i) (b) 14 · 8 min (ii)
- 3. (a) $N = 1000 e^{0.15t}$ 8. (a) 0.004 (b) 4.6; 300/h (b) 173 m
- 4. 70 days
- 5. 59%