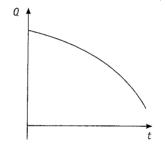
Applications of calculus to the physical world

TOPIC TEST

Time allowed: 1 hour

Total marks = 100

SECTION I Multiple-choice questions


10 marks

Instructions • This section consists of 10 multiple-choice questions

- Each guestion is worth 1 mark
- Fill in only ONE CIRCLE
- Calculators may be used
- 1 Velocity is the rate of change of:
 - (A) displacement
- **B** speed
- © acceleration
- none of these

2 From the diagram


(A)
$$\frac{dQ}{dt} > 0$$
 and $\frac{d^2Q}{dt^2} > 0$

- **3** If a particle is undergoing motion such that at a particular time T, x > 0, $\dot{x} < 0$ and $\ddot{x} < 0$ then at T the particle is:
 - (A) slowing down
- (B) speeding up
- © stationary
- (D) there is not enough information to determine what the particle is doing
- **4** The population P of a colony of flying foxes at time t is approximated using the expression $P = 800e^{0.5t}$. Initially the population was approximately:
 - **(A)** 1320
- **B** 800
- © 400
- (D) there is not enough information to determine the initial population
- **5** The graph shows the distance x of a particle (which is moving in a straight line), from a fixed point at time t. At what time is the particle moving fastest?

- \mathbf{B} t_2
- \bigcirc t_3
- \bigcirc t_4

- **6** If the velocity of a moving particle at time t is given by v = 9t the acceleration is?
 - $lack {f A}$ constant
- B zero
- © increasing
- (D) decreasing

7 The rate, R kg/s at which grain is flowing from a bin is given by $R = 80t - 3t^2$ where t is the time in seconds. For which value of t is R not physically possible?

- $\widehat{\mathbf{A}}$ t=0
- (B) t = 10
- (C) t = 20
- (\mathbf{D}) t = 30

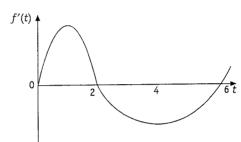
8 Which must be true if a particle is stationary?

(A) displacement is zero

(B) velocity is zero

(C) acceleration is zero

(D) all of these


9 The number of animals on an island, N, at time t is given by the formula $N = 7000e^{-kt}$ where k is a positive constant. Over time the number of animals on the island is?

(A) increasing exponentially

- (B) decreasing exponentially
- (C) increasing at a constant rate
- (D) decreasing at a constant rate

10 The diagram shows a sketch of the graph of y = f'(t) at time t. When t = 2, y = f(t) is?

- (A) a maximum
- (B) a minimum
- (C) zero
- (D) there is insufficient information

SECTION II

90 marks

Show all necessary working

11 If $v = 8 - 5t - 3t^2$ find:

2 marks each

12 If $f(t) = 2 \cos 4t$ find:

2 marks each

a f'(t)

b f''(t)

13 If $x = t^3 - 3t^2 + 7e^t$ find:

2 marks each

x

b ï

14	Fii	and x if $\dot{x} = 8t^2 - 6t + 3$ and, when $t = 2$, $x = 3$		4 marks
15	Fir	and x if $\ddot{x} = -4$ and, when $t = 1$, $\dot{x} = 5$ and $x = -4$	8	6 marks
16	 Q =	= $7 + 20t - 2t^2$ ($t \ge 0$). Find:		
	a	Q when $t = 4$		2 marks
	b	t when $Q = 39$		4 marks
		•		· · · · · · · · · · · · · · · · · · ·
	С	$\frac{dQ}{dt}$ when $t = 3$		4 marks
		. , d0		
	d	t when $\frac{dQ}{dt} = 0$		4 marks

o a previously empty chamber at	a rate given by $dV = e^t$ h.	2 marks 5 marks
a previously empty chamber at	a rate given by $dV = e^t$ have	
a previously empty chamber at	a rate given by $dV = e^t$ h.	
a previously empty chamber at	a rate given by $dV = e^t$ b	
n a previously empty chamber at	a rate given by $dV = e^t$ h	
he time in minutes.	a rate given by $\frac{d}{dt} = \frac{1}{5}$ where	V is the volume of gas
itial rate at which the gas is pu	mped into the chamber?	3 marks
sion for <i>V</i> in terms of <i>t</i> .		5 marks
teria in a culture is given by <i>N</i> = lours the number of bacteria ha	10 $000e^{kt}$ where k is a positive cosincreased to 20 000.	enstant and t the time
initial number of bacteria?		2 marks
of <i>k</i> correct to four decimal pla	ces.	4 marks
ti	The time in minutes. Sitial rate at which the gas is pure sion for V in terms of t . The seria in a culture is given by $N = 0$ ours the number of bacteria has initial number of bacteria?	sion for V in terms of t . Therefore, the specific parameters are the specific parameters of the specific parameters are the specific parameters. The specific parameters are the specific parameters are the specific parameters are the specific parameters are the specific parameters. The specific parameters are the specific parameter

continued ...

	С	How many bacteria are in the colony after 24 hours?	4 marks
	d	How long is it before the number of bacteria reaches 1 million?	5 marks
20		displacement, x m, of a moving particle at time t seconds is given by $x = \ln(1 + t)$ Find the velocity when $t = 2$	4 marks
	b	Find the acceleration when $t=2$	5 marks
21	is m	acceleration (a m s ⁻²) of a particle moving along the x -axis is given by $a = -1$. Originall poving with velocity 4 m s ⁻¹ at a position 8 m to the left of the origin. When is the particle stationary?	y the particle
			5 marks
	b 1	When is the particle at the origin?	5 marks 6 marks

19 continued ...

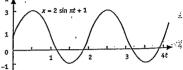
ANSWERS

Page 130 1 a displacement b zero 2 a the particle is moving to the left b the velocity gives the direction as well as the magnitude; speed = $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ velocity $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ b at 2 seconds and at 9 seconds $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ b 2.25 s $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ b at 2 seconds and at 9 seconds $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ b 2.25 s

Page 131 1 velocity **2** a slowing down **b** slowing down **c** speeding up **d** speeding up **3** a a = 160 - 6t **b** 148 m s⁻² **4** a v = -2t + 6 **b** -4 m s⁻¹ **c** $x = -t^2 + 6t - 2$ **d** 3 m

Page 132 1 a 0 s and 12 s b 432 m 2 a $x = 9t^2 - \frac{1}{3}t^3$ b -18 m s⁻², 972 m

Page 133 1 a 45 m s⁻¹ b 6 m s⁻² c 8 s d 128 m 2 a $v = t + \frac{4}{(t+1)^2} + 12$ b $x = \frac{t^2}{2} - \frac{4}{t+1} + 12t + 1$


Page 134 1 a i v = -6t + 13 ii $x = -3t^2 + 13t + 10$ b i $2\frac{1}{6}$ s ii 5 s

d The particle is initially at a position 10 m to the right of the origin travelling right at a speed of 13 m s⁻¹. It stops after $2\frac{1}{6}$ seconds, then moves left passing through the origin after 5 seconds, and continues to travel left at increasing speed.

Page 135 1 a 1 m to the right of the origin $b = \frac{1}{2}s$, 3 m $c = 2\pi^2$ m s^{-2} d (see right)

Pages 136-140 1 A 2 D 3 B 4 B 5 B 6 A 7 D 8 B 9 B 10 A 11 a -5 - 6t b -6 12 a -8 sin 4t b -32 cos 4t 13 a 3t² - 6t + 7e^t b 6t - 6 + 7e^t

14 $x = \frac{8t^3}{3} - 3t^2 + 3t - 12\frac{1}{3}$ 15 $x = -2t^2 + 9t + 1$ 16 a 55 b 2 or 8 c 8 d 5 17 a 5 b 45 18 a 0.2 L/min b $V = \frac{e^t - 1}{5}$

19 a 10 000 b 0.1386 c 278 576 [nearest whole number] d 34^{th} hour 20 a $\frac{1}{3}$ m s⁻¹ b $-\frac{1}{9}$ m s⁻² 21 a 4 s b 4 s c The particle

is stationary when t = 4, and because $\ddot{x} < 0$, the maximum displacement occurs when t = 4. So the maximum displacement is 0 m and the particle never moves right of the origin.