CHAPTER 5

Applications of calculus to the physical world

Derivatives with respect to time (1)

QUESTION **1** Find $\frac{dy}{dt}$ if:

a
$$y = 3t^2 - 8t + 4$$

b
$$y = 9 - 5t^7$$

c
$$y = (4t - 7)^5$$

QUESTION 2 Find f'(t) if:

a
$$f(t) = 6t^5 - 7t^3 + 2t$$

b
$$f(t) = t^4 + t^3 - t^2 - t + 1$$
 c $f(t) = \sin(2t + 5)$

c
$$f(t) = \sin(2t + 5)$$

QUESTION **3** Find $\frac{dx}{dt}$ if:

a
$$x = 3t^6 + t^3 - 7t - 1$$
 b $x = 4e^{2t-1}$

b
$$x = 4e^{2t-1}$$

c
$$x = (3t + 1)^2$$

QUESTION 4 Find \dot{x} if:

a
$$x = 7$$

b
$$x = 3 - 2t - 5t^2$$

$$\mathbf{c} \quad x = \ln t$$

QUESTION **5** Find \ddot{x} if:

a
$$x = t^3 - 10t^2$$

b
$$x = 8t$$

c
$$x = 3 \cos \pi t$$

Applications of calculus to the physical world

Derivatives with respect to time (2)

QUESTION 1 Find x if:

 $\dot{x} = 4t + 3$ and when t = 1, x = 5

b $\dot{x} = 8t^2 - 12t + 7$ and when t = -1, x = 3

QUESTION 2 Find x if:

 $\ddot{x} = 8 - t$ and when t = 0, $\dot{x} = 4$ and x = 2 **b** $\ddot{x} = 7$ and when $\dot{t} = 2$, $\dot{x} = 2$ and x = 58

 	_
1	
	_
	-

Applications of calculus to the physical world

Derivatives with respect to time (3)

QUESTION **1** If $Q = 20 + 8t - t^2$ ($t \ge 0$) find:

a Q when t = 5

b t when Q = 0

 $\mathbf{c} \quad \frac{dQ}{dt} \text{ when } t = 7$

d t when $\frac{dQ}{dt} = 0$

- QUESTION 2 $\frac{dV}{dt} = 10t^2 t^3$
- **a** Find $\frac{dV}{dt}$ when t = 4

b If V = 300 when t = 0 find V when t = 4

Applications of calculus to the physical world

EXCEL HSC MATHEMATICS pages 138-139

Rates of change (1)

Fill in the correct inequality signs (< or >) for each diagram:

а

d

The number of registered pets in a town, P, was studied over a period of time. At the beginning QUESTION 2 of this period there were 25 000 registered pets.

Throughout the period $\frac{dP}{dt} > 0$. What does this say about the number of registered pets during the period?

At the same time $\frac{d^2P}{dt^2}$ < 0. What does this say about the number of pet registrations?

Draw a possible sketch of P against t

Applications of calculus to the physical world

EXCEL HSC MATHEMATICS pages 138–139

Rates of change (2)

R when $t = 0$	b	t when R = 0			
an expression for V if $V = 1000$ when $t = 0$	d	V when t = 5			
			-117		
STION 2 Water is flowing through a filter in litres at time <i>t</i> minutes.		e rate given by ¹	<u>dV</u> dt = 90 - 5t,	where V is the	e vol
		e rate given by	dV dt = 90 - 5t,	where V is the	e vol
in litres at time t minutes. At what rate is the water flowing after 10 $ ext{i}$		e rate given by 4	dV dt = 90 - 5t,	where V is the	e vol
in litres at time t minutes.		e rate given by	dV dt = 90 - 5t,	where V is the	e vol
in litres at time t minutes. At what rate is the water flowing after 10 $ ext{i}$	minutes?	e rate given by	dV = 90 - 5t,	where V is the	e vol

Applications of calculus to the physical world

EXCEL HSC MATHEMATICS pages 138–139

Rates of change (3)

		-		_	-		e i is the time	in seconds.
!	What is the	e rate at wh	ich the flou	r is being po	ured whe	n t = 5?		
								
	After how	many second	ls is there n	o longer any	flour be	ing poured?		
			···					
								
								
	How much	flour is pour	red during t	he first 20 s	econds?			
	2				a ²		,	
					<u>-</u>			
	What is the	e maximum r	ate at which	h the flour p	ours into	the mixture?		
				·				
								
	· · ·							

ANSWERS

Page 120 1 **a** 6t - 8 **b** $-35t^6$ **c** $20(4t - 7)^4$ 2 **a** $30t^4 - 21t^2 + 2$ **b** $4t^3 + 3t^2 - 2t - 1$ **c** $2\cos(2t + 5)$ 3 **a** $18t^5 + 3t^2 - 7$ **b** $8e^{2t-1}$ **c** 6(3t + 1) 4 **a** 0 **b** -2-10t **c** $\frac{1}{t}$ 5 **a** 6t - 20 **b** 0 **c** $-3\pi^2\cos\pi t$

Page 122 1 a 35 b 10 c -6 d 4 2 a 96 b $449\frac{1}{3}$

Page 123 1 a >,< b <, < c <, > d >, > 2 a The number of registered pets is increasing over the period. b The number of pet registrations is increasing at a decreasing rate. c (see right)

Page 124 1 a 0 b 0 or 40 c $V = 800t^2 - \frac{t^4}{4} + 1000$ d 20 843.75 2 a 40 L/min b after 18 minutes c 810 litres

Page 125 1 a 4375 grams per second **b** 30 seconds **c** 140 kg **d** $6000\sqrt{3}$ g/s

Page 126 1 a 9113 b 20 c 442 943 2 a 51.8 b 7.7 c -3.0

Page 127 2 a 400 b 0.0260 c 264 [nearest whole number] d -6.9 [1 d.p.]

Page 128 1 a 59 g [nearest g] b 1.2 grams per year [1 d.p.] 2 b In the 10th hour

Page 129 1 a 0.03466 b 1345 2 a 0.0080 [4 d.p.] b 174 hours