Coordinate Geometry

Exercise 15S Skills Practice

1 Write down in the form $(y - y_1) = m(x - x_1)$ the equation of a line passing through the given point and with the given gradient, m.

a
$$(4,3)$$
; $m=2$

b
$$(5,0)$$
; $m=\frac{1}{2}$

c
$$(^{-}1, 6)$$
; $m = 3$

d
$$(^{-}5, 5)$$
; $m = 1$

$$(8, \frac{5}{2}); m = -4$$

e
$$(8, \frac{5}{2});$$
 $m = -4$ f $(-7, -2);$ $m = \frac{3}{4}$

2 Find in the form y = mx + c the equation of a line passing through the given point and with the given gradient, m.

a
$$(0, 6)$$
; $m = 3$

b
$$(3,3)$$
; $m=1$

c
$$(4, 9)$$
; $m = -2$

d (-6, 8);
$$m = \frac{1}{3}$$

$$e^{(\frac{3}{2},4)}; m=5$$

d (-6, 8);
$$m = \frac{1}{3}$$
 e $(\frac{3}{2}, 4)$; $m = 5$ **f** (-8, 0); $m = -\frac{1}{2}$

Find in the form ax + by + c = 0 the equation of a line passing through the given 3 point and with the given gradient, m.

b (18, 6);
$$m = -2$$

$$\mathbf{c}$$
 (-4, 4); $m = 1$

d
$$(5, 2)$$
; $m = 3$

m = 1

e
$$(4, \frac{7}{2}); m = \frac{1}{4}$$

e
$$(4, \frac{7}{2})$$
; $m = \frac{1}{4}$ f $(-9, -6)$; $m = -\frac{3}{5}$

4 Find in the form y = mx + c the equation of a line passing through the points

b
$$(^{-}10, 0)$$
 and $(0, 5)$

d
$$(^{-}6, ^{-}2)$$
 and $(3, 4)$

$$e (0, 8) \text{ and } (5, -2)$$

$$f (\frac{3}{4}, 1)$$
 and $(2, \frac{5}{4})$

5 Find in the form ax + by + c = 0 the equation of a line passing through the points

$$\mathbf{c}$$
 (-1, 2) and (5, 6)

d
$$(7, \frac{1}{2})$$
 and $(11, 1)$

$$e^{-4,-6}$$
 and $(2, 9)$

f
$$(^{-}6, \frac{3}{5})$$
 and $(1, ^{-}5)$

Find the gradient of each line. 6

a
$$y = x + 3$$

b
$$y = 2 - 3x$$

c
$$5x - y + 2 = 0$$

d
$$3x + y - 4 = 0$$

$$e x - 2y - 7 = 0$$

$$\mathbf{f} \quad x + y = 0$$

$$g 7x - 2y = 4$$

h
$$2x + 10y - 11 = 0$$

i
$$8x + 5y - 19 = 0$$

7 State any pairs of lines in question 6 that are parallel.

8 State any pairs of lines in question 6 that are perpendicular.

9 Find the equation of a line passing through the given point and parallel to the given line. Give your equation in the form y = mx + c.

a
$$(1, 2)$$
; $y = 3x - 4$

b
$$(4, 0)$$
; $y = 6 - x$

c
$$(3, 8)$$
; $2x - 3y + 4 = 0$

d
$$(^{-}7, 5)$$
; $x + 4y = 5$

Find the equation of a line passing through the given point and perpendicular to 10 the given line. Give your equation in the form ax + by + c = 0.

a
$$(9, 1)$$
; $y = 2x - 4$

b
$$(^{-}3, ^{-}2); y = ^{-}3x + 7$$

c
$$(5,4)$$
; $3x$

$$3x - 2y = 0$$

d
$$(6, -3)$$
; $5x + 4y + 8 = 0$

Find the coordinates of the mid-point of a line joining each pair of points.

e (7, 3) and (4, 4) f
$$(\frac{3}{2}, 6)$$
 and (7, 7)

12 Find the equation of the perpendicular bisector of a line joining each pair of points. Give your equation in the form ax + by + c = 0.

b
$$(^{-}4, 1)$$
 and $(4, 5)$

$$c$$
 (1, 1) and (3, 5)

$$f(^{-1},^{-1})$$
 and $(4,5)$

- A line has gradient 2 and passes through the point (1, 8).
 - a Find the equation of the line in the form y = mx + c.
 - b Find the coordinates of the points where the line intersects the coordinate axes.
- 14 The line l_1 passes through the points A(1, 9) and B(4, -3).
 - a Find the equation of the line l_1 in the form y = mx + c.

The line l_2 is parallel to the line l_1 and passes through the point C(5, -1)

- **b** Find the equation of the line l_2 in the form y = mx + c.
- 15 The line l passes through the points A ($^{-}8$, 0) and B (0, 4).
 - a Find the equation of the line l in the form ax + by + c = 0.
 - **b** Find the coordinates of the point C, the mid-point of AB.
 - c Find in surd form the length OC where O is the origin.
- The line l has a gradient of $^{-}2$ and passes through the point A (3, 4).
 - a Find an equation of the line l.
 - **b** Find the coordinates of the points B and C where the line intersects the coordinate axes.
 - c Find the area of triangle OBC where O is the origin.
- 17 The line l passes through the points P(-2, 3) and Q(4, 7).
 - a Find the equation of the line l in the form ax + by + c = 0.

The line m is perpendicular to the line l and passes through the point R (3, 2).

- **b** Find an equation of the line m.
- c Find the coordinates of the point S where l and m intersect.

Exercise 15S Skills Practice

- 1 **a** (y-3)=2(x-4) **b** $y=\frac{1}{2}(x-5)$ **c** (y-6)=3(x+1) **d** (y-5)=(x+5)**e** $(y-\frac{5}{2})=-4(x-8)$ **f** $(y+2)=\frac{3}{4}(x+7)$
- 2 **a** y=3x+6 **b** y=x **c** y=-2x+17 **d** $y=\frac{1}{2}x+10$ **e** $y=5x-\frac{7}{2}$ **f** $y=-\frac{1}{2}x-4$
- 3 **a** x-y-4=0 **b** 2x+y-42=0 **c** x+y=0 **d** 3x-y-13=0 **e** x-4y+10=0 **f** 3x+5y+57=0
- 4 a y=x+4 b $y=\frac{1}{2}x+5$ c y=2x-5d $y=\frac{2}{3}x+2$ e y=-2x+8 f $y=\frac{1}{5}x-\frac{17}{20}$
- 5 **a** *x*-*y*-8=0 **b** *x*+*y*+2=0 **c** 2*x*-3*y*+8=0 **d** *x*-8*y*-3=0 **e** 5*x*-2*y*+8=0 **f** 4*x*+5*y*+21=0
- 6 **a** 1 **b** -3 **c** 5 **d** -3 **e** $^{1/2}$ **f** -1 **g** $^{7/2}$ **h** $^{-1}/_{5}$ **i** $^{-8}/_{5}$
- 7 b and d
- 8 a and f; c and h

- 9 **a** y=3x-1 **b** y=-x+4 **c** $y=^{2}/_{3}x+6$ **d** $y=^{-1}/_{4}x+^{13}/_{4}$
- **10 a** *x*+2*y*-11=0 **b** *x*-3*y*-3=0 **c** 2*x*+3*y*-22=0 **d** 4*x*-5*y*-39=0
- 11 **a** (4, 2) **b** (6, 5) **c** ($\frac{5}{2}$, 10) **d** (-2, 7) **e** ($-\frac{3}{2}$, $\frac{1}{2}$) **f** ($\frac{17}{4}$, $-\frac{1}{2}$)
- 12 **a** x+y-4=0 **b** 2x+y-3=0 **c** x+2y-8=0 **d** 2x-3y+11=0 **e** 4x+3y-4=0 **f** 10x+12y-39=0
- 13 a y=2x+6 b (0,6), (-3,0)
- 14 a y=-4x+13 b y=-4x-21
- 15 **a** x=2y+8=0 **b** (-4,2) **c** $2\sqrt{5}$
- **16 a** y=-2x+10 **b** (0, 10), (5, 0) **c** 25
- 17 **a** 2x-3y+13=0 **b** 3x+2y-13=0 **c** (1,5)