- 1. (a) Where does the parabola: $y = x^2 + 4x + 10$ cut the y-axis?
 - (b) Using the method of completing the squares, find its vertex.

- (c) What is the minimum value of this function?
- 2. (a) Find the co-efficient of x^2 in the expansion of :

$$(x^2 - 3x - 1).(3x^2 - x + 2)$$

(b) Find **a**, **b** and **c** if:-
ax(x+1) + b(x+1) + c =
$$2x^2 + x - 1$$

3. (a) Where does the curve : y = (x+1)(2-x)(x+3)(2x-1)cut the x and y axes?

(b) Sketch the curve:

4. What is the equation of the curve below?

Equation:

5. (a) Show that
$$(x+3)$$
 is a factor of:

$$x^3 + x^2 - 9x - 9$$

$$x^3 + x^2 - 9x - 9 = 0$$

6. (a) What is the co-efficient of x³ in the following:

(i)
$$(x+1)^{20}$$

7. (a) Expand the binomial
$$(2x+3)^5$$

8. (a) Simplify

(i)
$$\frac{8!}{6!}$$
 (ii) $\frac{8!}{6!2!}$ (iii) $\frac{(n+1)!}{n!}$

(b) If
$${}^{n}C_{3} = \operatorname{an}^{3} + \operatorname{bn}^{2} + \operatorname{cn}$$

Find a, b and c

8. If x-5 and x+2 are both factors of the polynomial:

$$x^3 - 5x^2 + ax + b$$

Find a and b.

Name:

Amu

1. (a) Where does the parabola:

$$y = x_1^2 + 4x + 10$$
 cut the y-axis?

(b) Using the method of completing the squares, find its vertex.

$$x^{2}+4x+10=y$$

$$x^{2}+4x=y-10$$

$$x^{2}+4x+4=y-6$$

$$(x+2)^{2}=y-6$$

$$(x+2)^{2}=y-6$$

$$(x+2)^{2}+6$$

$$(x+2)^{2}+6$$

$$(x+2)^{2}+6$$

(c) What is the minimum value of this function?

2. (a) Find the co-efficient of x^2 in the expansion of:

$$= 3x^{4} - x^{3} + 2x^{2} - 9x^{3} + 3x^{2} - 6x - 3x^{2} + x - 2$$

$$= 3x^{4} - 10x^{3} + 2x^{2} - 5x - 2$$

$$= 3x^{4} - 10x^{3} + 2x^{2} - 5x - 2$$

$$= 3x^{4} - 10x^{3} + 2x^{2} - 5x - 2$$

$$= 3x^{4} - 10x^{3} + 2x^{2} - 5x - 2$$

(b) Find a, b and c if:-

$$ax(x+1) + b(x+1) + c = 2x^{2} + x - 1$$

$$LHS = ax^{2} + ax + bx + b + c$$

$$= ax^{2} + (a+b)x + b + c$$

$$a = 2$$

$$a+b=1$$
 $5ub a=2$
 $b=-1$
 $b+c=-1$
 $c=0$
 $c=0$
 $c=0$

3. (a) Where does the curve:

$$y = (x+1)(2-x)(x+3)(2x-1)$$

cut the x and y axes?

when
$$x=0, y=-6, y=-6, y=-6$$

when
$$y=0, z=-1, 2, -3, \frac{1}{2}$$

$$x = -3, -1, \frac{1}{2}$$

(b) Sketch the curve:

4. What is the equation of the curve below?

Equation: $k(\alpha-2)^2(\alpha+1) = y^2$...(i)

$$K(-2)^{-}(1) = -4$$

 $K = -\frac{4}{7} = -1$

$$f = -(x-2)^{2}(x+1)$$

$$x^{3} + x^{2} - 9x - 9$$
let $P(3) = x^{3} + x^{2} - 9x - 9$

$$P(-3) = (-3)^{3} + (-3)^{2} - 9(-3) - 9$$

$$= -27 + 9 + 27 - 9$$

$$= 0$$

$$(2x+3) \text{ is a factor}$$

(b) Find the other factors and fully factorise the above polynomial.

$$\frac{x^{2}-2x-3}{x^{3}+x^{2}-9x-9}$$

$$\frac{x^{3}+3x^{2}-9x-9}{x^{3}+3x^{2}}$$

$$\frac{x^{3}+3x^{2}-9x-9}{x^{3}+3x^{2}-9x-9}$$

$$\frac{x^{3}+3x^{2}-9x-9}{x^{3}+3x^{2}-9x-9}$$

$$\frac{x^{3}+3x^{2}-9x-9}{x^{3}+3x^{2}-9x-9}$$
(c) Solve the equation:

(c) Solve the equation:

$$x^{3} + x^{2} - 9x - 9 = 0$$

when $P(x) = 0$
 $x = 3, -1, -3$

6. (a) What is the co-efficient of x^3 in the following:

(i)
$$(x+1)^{20}$$

(ii)
$$(1-x)^{15}$$

7. (a) Expand the binomial
$$(2x+3)^5$$

(i)
$$\frac{8!}{6!}$$
 (ii) $\frac{8!}{6!2!}$ (iii) $\frac{(n+1)!}{n!}$

(b) If
$${}^{n}C_{3} = \operatorname{an}^{3} + \operatorname{bn}^{2} + \operatorname{cn}$$

Find a, b and c

8. If x-5 and x+2 are both factors of the polynomial:

$$x^3 - 5x^2 + ax + b = P(x)$$

Find a and b.

$$P(5) = (5)^{3} - 5(5)^{2} + a(5) + b$$

$$= 125 - 125 + 5a + b = 0$$

$$P(-2) = (-2)^{3} - 5(-2)^{2} + a(-2) + b$$

$$= -8 - 20 - 2a + b = 0$$

$$\begin{array}{rcl}
5a+b=0 & 2 \\
-2a+b=28 & 3 \\
\hline
7a & =-28 \\
a & =-4 & b=20
\end{array}$$