

Geometry

Question 1 Find the value of each pronumeral in the following questions, stating the reasons:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(1)

Question 2 Reasoning

Prove that k+n=2m

(a)

(b)

 $\angle STQ = \angle PRQ + \angle QPR$

Prove that |PQ||ST

	······································	
<u>;</u>		

Que (a)	estion 3 Congruent triangles
(a)	
	. /
	ABCD is a parallelogram
	Prove that $\triangle ABC = \triangle CDA$
(c)	$PM \perp KL$ and $QL \perp KM$ $\stackrel{K}{\wedge}$
,	
	ΔKLM is isosceles P
	Prove that
	PM = QL
	1 m = Q2

(e) AP = AQ, BP = CQProve that AB = AC

Question 4 Constructions using compass and ruler only

(a) Bisect interval AB

(b) Bisect ∠ABC

- (c) Construct an angle of 60° on AB at A.
- (d) Construct an angle of 30° on AB at A.

 \overline{A} \overline{B}

- (e) Construct an angle of 90° on AB at A.
- (f) Construct a perpendicular to AB at C.

- (g) Construct a perpendicular from C to AB.
- (h) Construct a line through P parallel to AB.

C

P

Question 5

- (a) Construct a square inside a circle of radius 2 cm.
- (b) Construct a regular hexagon inside a circle of radius 3 cm.

- (c) Construct a regular octagon inside a circle of diameter 4 cm.
- (d) Construct $\angle ABC$ if AB = 5.3 cm, BC = 3.7 cm, AC = 4.1 cm.

(e) Construct a square of side 4 cm.

Construct a parallelogram with sides 5 cm and 3 cm, and acute angle of 60°.

(g) Construct an angle of 120°.

(h) Divide interval AB into 5 equal parts using compass and ruler only.

A

25 Geometry

- 1 (a) $x = 18^{\circ}$, complementary angles
 - (b) $a=121^{\circ}$, corresponding; $b=20^{\circ}$, alternate; $c=20^{\circ}$, angles in a Δ sum to 180°
 - (c) $x = 95^{\circ}$, cointerior to 120° and alternate to 35°
 - (d) $n = 65^{\circ}$, cointerior to 115°; $m = 65^{\circ}$, corresponding to n
 - (e) $a = 10^{\circ}$, alternate; $y = 20^{\circ}$, vertically opposite
 - (f) $a = 116^{\circ}$, alt./corres./alt.
 - (g) $x = 109^{\circ}$, alt./coint.
 - (h) $x = 80^{\circ}$, angles in a Δ sum to 180°
 - (i) $x = 90^{\circ}$, supp./ vert. opp.
 - (j) $m = 62^{\circ}$, supp. and ext. angle
 - (k) $a = 70^{\circ}$, \angle s in a quadrilateral sum to 360°; $b = 110^{\circ}$, supplementary
 - (l) $x = 27^{\circ}$, \angle s in a quadrilateral sum to 360°
- 2 A variety of proofs could
- 3 \int be applied with accuracy.
- 4 Constructions.