FORT STREET HIGH SCHOOL

Trial Higher School Certificate Examination 1992

Mathematics - 2/3 Unit

Time allowed - THREE Hours (includes reading time)

DIRECTIONS TO CANDIDATES:

- * All questions may be attempted .
- *All questions are of equal value.
- *All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- * Standard integrals are included .
- * Each question attempted is to be started on a new page.
- *If required additional paper may be obtained from the Examination Supervisor on request .

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Question 7	
Question 8	
Question 9	
Question 10	
Total	

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0.$$

$$\int \frac{1}{x} dx = \log_{e} x, x > 0.$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0.$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0.$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0.$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a \neq 0.$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0.$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0.$$

$$\int \frac{1}{\sqrt{(a^{2} - x^{2})}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a.$$

$$\int \frac{1}{\sqrt{(x^{2} + a^{2})}} dx = \log_{e} \{x + \sqrt{(x^{2} + a^{2})}\}, |x| > |a|.$$

$$\int \frac{1}{\sqrt{(x^{2} + a^{2})}} dx = \log_{e} \{x + \sqrt{(x^{2} + a^{2})}\}.$$

QUESTION 1:

(a) Find the exact value of

(i)
$$\sqrt{7} + \sqrt{28}$$

(ii)
$$36^{\frac{1}{4}} \times 36^{\frac{1}{4}}$$

(b) Solve the quadratic equation $3x^2 + 3x - 1 = 0$ (Round off solutions to 2 decimal places)

(c) Factorise a)
$$3a^2 - 12$$

b)
$$x^3 - 8$$

(d) Find the 250th term of this sequence

(e) Solve
$$|2x-1| \leqslant 5$$

QUESTION 2:

(a) Find the derivative of the following;

(i)
$$y = 5x^2 + 2x$$

(ii)
$$y = e^{2x}$$

(iii)
$$y = log_e x^2$$

(iv)
$$y = \sin 2x$$

(b) In the diagram PQ is parallel to RS

$$PR = PS$$
, $QP = QT$ and $\angle PRS = 70^{\circ}$ find $\angle PQT$

give the reasons for each step in your answer.

- (c) (i) In the diagram find to the nearest minute \angle BAC
 - (ii) Find the area of \triangle ABC to two decimal places.

QUESTION 3:

- a) Given the points A (1,-1) B (5,1) and C (3,2)
 - (i) Show the equation of line AB is x 2y 3 = 0
- (ii) Find the perpendicular distance C is from line AB (to 2 decimal planes)
- (iii) Find the angle, to the nearest degree, that line AB makes with the x-axis.
- b) Find the exact value of $\int_{1}^{2} \frac{1}{1+x} dx$
- c) Find $\int e^{3x} dx$

OUESTION 4:

- (a) For the function $y = x^3 + 3x^2 9x$
 - (i) Find all stationary points and determine their nature.
 - (ii) Find the point or points of inflection.
- (b) A bag contains 4 black and 3 red marbles. If a marble is selected at random, its colour noted and then returned to the bag before a second marble is drawn. What is the probability that:
- (i) both marbles are red
- (ii) one is red the other black
- (iii) at least one marble is red

OUESTION 5:

a) O is the centre of the circle. YC \perp AB, XD \perp AB Prove \triangle OYC \equiv \triangle OXD. State reasons for each step

b) For what values of K does the quadratic equation

$$x^2 - 2x + K = 0$$
 have real roots

- c) For the function $y = \sqrt{4 x^2}$
 - (i) Find the first derivative
 - (ii) State its domain and range
 - (iii) Draw a sketch of the function.

QUESTION 6:

- a) Find the volume (to two decimal places) of the solid of revolution formed by rotating the curve $y = \frac{1}{x}$ about the x-axis between x = 1 and x = 3
- The sixth and thirteenth terms of an arithmetic sequence are 17 and 31 respectively.
 Find the common difference and first term.
- c) The roots of the quadratic equation px ²- x + q=0 are -1 and 3 find p and q
- d) Find the limiting sum of $5 + 1 + 1/5 + 1/25 + \dots$

QUESTION 7:

a) A container in the shape of a cylinder is to be made so the sum of its height and radius is 100cm.

$$V = TTr^2 (100 - r)$$

ii) Find the value for r so the volume is a maximum.

- b) Find the equation of the tangent to the curve $y = 3 \ln x + 2$ at the point where x = 1
- c) Draw the graph of $y = 3 \sin 2x$ for $0 \le x \le 2\pi$

QUESTION 8:

- a) Solve $\sin^2 x = 1/4$ for $0 \le x \le 2\pi$ (give exact answer in radians)
- b) Starting with 6, how many consecutive multiples of 6 must be added to make their sum exceed 1000.
- c) Find the derivative of

$$i)_{y=\frac{x^2-2x}{2x+3}}$$

ii)
$$y = x^2 \ln x^2$$

d) Evaluate $\sum_{n=1}^{12} 50 (1.01)^{n-1}$

QUESTION 9:

- (a) Consider the function defined by $f(x) = e^{2x} (1-x)$ where $-3 \le x \le 1$
- (i) Copy and complete this table of values
 Give answers correct to two decimal places.

X.	-3	-2	-1	0	1
у	.01	.05			

- (ii) Differentiate f(x) and hence show that the function has only one stationary point.
- (iii) Sketch the curve y = f(x) for $-3 \le x \le 1$
- (iv) Use Simpsons rule with five function values (4 strips) to approximate the area under the curve y = f(x) for $-3 \le x \le 1$

QUESTION 10:

- a) A wheel of radius 50cm is rolled 10cm along the ground.
- (i) Find the angle this wheel has turned in radians
- (ii) Give this angle in degrees to the nearest minute.

Q 10 (cont)

b) The following solid shape is made by rotating the graphs of $y = x^2$ and y=1/x about the y-axis for $0 \le y \le 4$

- (i) Show point P is (1,1)
- (ii) Find the volume of this solid
- c) Mr Drapiod contributes towards a pension a sum of \$2500 annually at the beginning of each year for 12 years. If he receives 5% interest per annum what is the accumulated value of his contributions at the end of the 12th year.

$$Q \mid (a)(1) \mid 3\sqrt{7} \mid / (a) \mid 6 \mid / (a) \mid 6 \mid / (a) \mid$$

$$(6) \qquad -\frac{3 \pm \sqrt{21}}{6} \qquad = 0.26 67 -1.26$$

(b)
$$(x-2)(x^2+2x+4)v$$

(ii)
$$y' = 2e^{2x} \vee$$

Q3 (a) (1)
$$x-2y-3=0$$
 as regard

(11)
$$\frac{24}{49}$$

$$(iii) \frac{33}{49}$$

(c)(i)
$$4' = \frac{-x}{\sqrt{4-x^2}} \checkmark \checkmark$$

(1)
$$T = 66\frac{2}{3}$$
 cm $\sqrt{\sqrt{}}$

(4)
$$3x - y - 1 = 0$$

$$Q8(a) = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

(c) (1)
$$2x^2+6x-6$$
 (2x+3)2

(9	リ	ļ	
10	١,	1	ï

×	-3	-2	-/	0	,	 -
y	0.01	0.05	0.27	1	0	

(ii)
$$\left(\frac{1}{2}, \frac{e}{2}\right)$$
 max. t.p.

(iv) 1.58

(ii)
$$V_1 = \int_0^1 \pi y \, dy = \frac{\pi}{2}$$

$$V_2 = \int_1^4 \pi y^{-2} \, dy = \frac{3\pi}{4}$$

:. Total volume req d = 5 th cm3

$$A_{12} = PR^{12}$$

$$A_{11} = PR^{"}$$

$$\vdots$$

$$A_{1} = PR^{'}$$

(9)	1	,	·				
(a)(i)	x	-3	-2	-/	0	1	
in,	у	0.01	0.05	0.27	1	0	

(ii)
$$\left(\frac{1}{2}, \frac{e}{2}\right)$$
 max. t.p.

(iv) 1.58

(10) (i)
$$\theta = \frac{1}{5}^{c}$$
 (ii) $11^{\circ}28'$

(ii)
$$V_1 = \int_0^1 \pi y \, dy = \frac{\pi}{2}$$

$$V_2 = \int_1^4 \pi y^{-2} \, dy = \frac{3\pi}{4}$$

.. Total volume requ = 5th cm3

(c)
$$A_{12} = PR^{12}$$

$$A_{11} = PR^{"}$$

$$\vdots$$

$$A_{1} = PR^{'}$$