Functions

(Preliminary Course)

- 1. Sketch the graph of each of the relations y = |x| and |y| = x. In each case explain whether or not the relation is a function.
- 2. Explain why the relation $x^2 + y^2 = 5$ is not a function.
- 3. Find the largest possible domain of each of the following functions.

(i)
$$y = \frac{1}{x^2 + 1}$$
 (ii) $y = \frac{1}{(x+1)^2}$

(iii)
$$y = \frac{1}{\sqrt{x+1}}$$
 (iv) $y = \frac{1}{\sqrt{x+1}}$

- 4. Find the largest possible domain of the function $y = \sqrt{1 2x} + \sqrt{2 + x}$.
- 5. Find the largest possible domain and the range of each of the following functions.

(i)
$$y = x^2 - 2x$$

(ii)
$$v = 4x - x^2$$

6. Use the graph of $y = \sqrt{x}$ to sketch the graphs of

(i)
$$y = \sqrt{x-2}$$

(ii)
$$y = \sqrt{x} - 2$$

- 7. On the same axes sketch the graphs of $y = 4 x^2$ and $y^2 = 4 x^2$.
- 8. Sketch the graph of $y = \sqrt{4 + x}$ and find its domain and range.

- 9. Show that the function f(x) = |x| 2 is even. Sketch its graph and use the graph to find the values of x for which |x| > 2.
- 10. Show that the function $f(x) = 4x x^3$ is odd. Sketch its graph and use the graph to find the values of x for which $x^3 > 4x$.
- 11. Sketch the graph of the function $f(x) = \begin{bmatrix} \sqrt{25 x^2}, & -5 \le x \le 3 \\ 4, & 3 < x \le 5 \end{bmatrix}$ Find the value of f(4) f(0).
- 12. Sketch the graph of the function $\int 2^x , x \le 2$

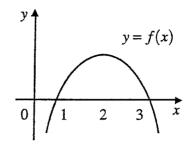
$$f(x) = \begin{bmatrix} 2^x & , & x \le 2 \\ \frac{8}{x} & , & x > 2 \end{bmatrix}$$

Find the range of the function.

13. Sketch the graph of the function

$$f(x) = \begin{bmatrix} x^2 - 4 & , & x \le 0 \\ x - 4 & , & x > 0 \end{bmatrix}$$

Find the values of x for which f(x) is negative.


14. Sketch the graph of the function

$$f(x) = \begin{bmatrix} x^2 + 1 & , & x \le 0 \\ |x - 1| & , & 0 < x \le 2 \\ 1 & , & x > 2 \end{bmatrix}$$

15. Find the centre and radius of the circle $x^2 + y^2 - 6x + 2y + 6 = 0$. Sketch its graph.

- 16. Sketch the graph of the circle $(x-4)^2 + (y-4)^2 = 16$. Find the area of the region in the first quadrant bounded by the circle and the coordinate axes.
- 17. On the same axes sketch the graphs of $y = 13 x^2$ and $y = \frac{12}{x}$. By inspection of the graph, state the number of solutions of the equation $13 x^2 = \frac{12}{x}$. (There is no need to find these solutions nor the coordinates of the intersection points of the graphs.)
- 18. On the same axes sketch the graphs of $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$. Shade in the region where $4 \le x^2 + y^2 \le 16$, and find its area.
- 19. On the same axes sketch the graphs of y = |x| and xy = 1. Shade in the region where y < |x| and $xy \ge 1$.
- 20. On the same axes sketch the graphs of $y = \sqrt{4 x^2}$ and x y + 2 = 0. Shade the region where $y \le \sqrt{4 x^2}$ and $x y + 2 \le 0$, and find its area.
- 21. Show that the function $f(x) = \sqrt{x^2 4}$ is even and find its domain and range.
- 22. Sketch the graph of the function $y = \frac{x+2}{x+1}$ and state its domain and range.

Figure 4.19

The diagram shows the graph of the function y = f(x). Find the domain of each of the functions

(i)
$$y = \frac{1}{f(x)}$$
 (ii) $y = \sqrt{f(x)}$

24. Sketch the graph of the function

$$f(x) = \begin{bmatrix} 2 & , & 2 < |x| \le 4 \\ |x| & , & |x| \le 2 \end{bmatrix}$$

- 25. (i) If $x^2 + y^2 + 2fx + 2gy + c = 0$ is the equation of a circle, find its centre and radius.
 - (ii) Find the condition on f, g and c so that $x^2 + y^2 + 2fx + 2gy + c = 0$ is the equation of a circle.

ANSWERS

1.

Figure 16.1

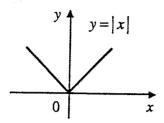
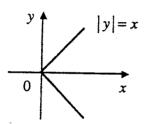



Figure 16.2

Applying the vertical line test, y = |x| is a function but |y| = x is not a function.

- 2. Both the points (1,2) and (1,-2) lie on the circle $x^2 + y^2 = 5$, hence the relation is not a function.
- 3. (i) All real x (ii) $\{x: x \neq -1\}$ (iii) $\{x: x \geq 0\}$ (iv) $\{x: x > -1\}$
- **4.** $2x \le 1$ and $x \ge -2 \implies \{x : -2 \le x \le \frac{1}{2}\}$
- 5. (i) y = x(x-2) is concave up parabola with vertex (1,-1). \therefore Domain: all real x; Range: $\{y: y \ge -1\}$
 - (ii) y = -x(x-4) is concave down parabola with vertex (2,4).

.. Domain: all real x; Range: $\{y: y \le 4\}$ 6. (i)

Figure 16.3

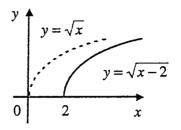
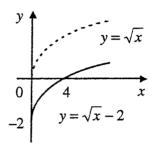
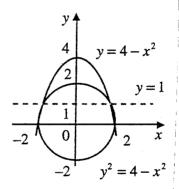




Figure 16.4

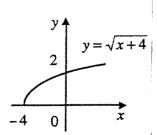
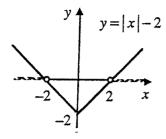

7.

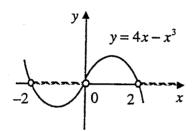
Figure 16.5

8.


Figure 16.6

Domain: $\{x: x \ge -4\}$;

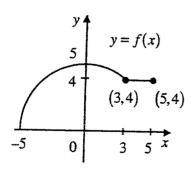
Range: $\{y: y \ge 0\}$


Figure 16.7

Require x values for which graph lies above x-axis. $\therefore x < -2$ or x > 2

10.

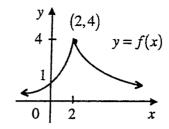
Figure 16.8



Require values of x for which graph lies below the x-axis.

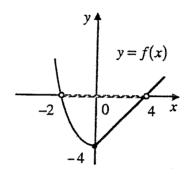
$$\therefore -2 < x < 0 \text{ or } x > 2$$

11.


Figure 16.9

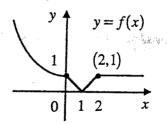
$$f(4) - f(0) = 4 - \sqrt{25} = -1$$

12.


Figure 16.10

Range: $\{y: 0 < y \le 4\}$

13.


Figure 16.11

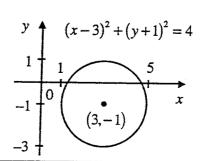
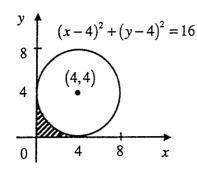
Require values of x for which graph lies below the x-axis. $\therefore -2 < x < 4$

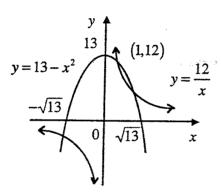
14.

Figure 16.12

15. $(x-3)^2 + (y+1)^2 = 4$ is circle with centre (3,-1) and radius 2.

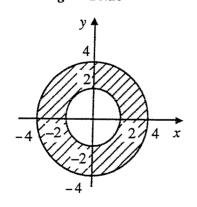
Figure 16.13


Figure 16.14

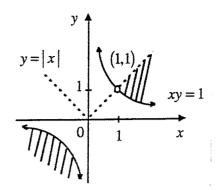
Area square – Area $\frac{1}{4}$ circle = $16 - \frac{1}{4}\pi \times 4^2 = 16 - 4\pi$

17.


Figure 16.15

Three intersection points and hence three solutions.

18.


Figure 16.16

Area is $\pi(4^2 - 2^2) = 12\pi$

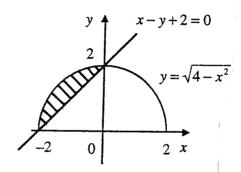
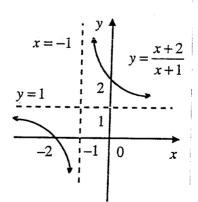

19.

Figure 16.17

20.

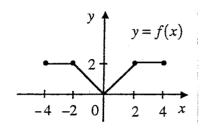
Figure 16.18



Area $\frac{1}{4}$ circle – Area Δ = $\frac{1}{4}\pi \times 2^2 - \frac{1}{2} \times 2 \times 2 = \pi - 2$

21. Domain: $\{x: x \le -2 \text{ or } x \ge 2\}$ Range: $\{y: y \ge 0\}$

22.


Figure 16.19

Domain: $\{x: x \neq -1\}$; Range: $\{y: y \neq 1\}$

23. (i)
$$\{x: x \neq 1, x \neq 3\}$$

(ii) $\{x: 1 \leq x \leq 3\}$

Figure 16.20

25.
$$(x+f)^2 + (y+g)^2 = f^2 + g^2 - c$$

(i) Centre $(-f, -g)$;
radius $\sqrt{f^2 + g^2 - c}$
(ii) $f^2 + g^2 \ge c$