(1 <u>)</u>	ACE	Exami	nations
101	, ,	-/10/11/11	, , 00 6 1 0 2 1 0

Student Name:	
Student Name:	

YEAR 12 YEARLY EXAMINATION

Mathematics General 2

General Instructions

- Reading time 5 minutes
- Working time 2.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A formula and data sheet is provided at the back of this paper
- In Questions 26-30, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

25 marks

- Attempt Questions 1-25
- · Allow about 35 minutes for this section

Section II

75 marks

- Attempt Questions 26-30
- · Allow about 1 hour 55 minutes for this section

Section I

25 marks
Attempt Questions 1 - 25
Allow about 35 minutes for this section

Use the multiple-choice answer sheet for Questions 1-25

- 1 Simplify $6x^2 + 2x + 4x^2$
 - (A) $12x^2$
 - (B) $12x^4$
 - (C) $10x^2 + 2x$
 - (D) $10x^4 + 2x$
- 2 Which of the following represents 0.5 terabytes using standard notation?
 - (A) 0.55×10^{11} B
 - (B) 0.55×10^{12} B
 - (C) 5.5×10¹¹ B
 - (D) 5.5×10^{12} B
- 3 The line l has intercepts c and d, where c and d are integers.

What is the gradient of line 1?

- (A) $-\frac{c}{d}$
- (B) $-\frac{d}{c}$
- (C) $\frac{c}{d}$
- (D) $\frac{d}{c}$

- 4 Isaac buys 5 tickets in a raftle where 230 tickets were sold. He wins first prize. What is the probability that he also wins second prize?
 - (A) $\frac{1}{230}$
 - (B) $\frac{1}{46}$
 - (C) $\frac{2}{115}$
 - (D) $\frac{4}{229}$
- 5 The angle of depression from A to C is 40°. The distance from B to C is 15 metres.

Not to scale

How high above B is A, to the nearest metre?

- (A) 10 m
- (B) 11 m
- (C) 13 m
- (D) 18 m
- 6 Jasmine purchased a used car for \$7 500 and depreciated it by \$700 each year. What is its depreciated value after three years?
 - (A) \$4 700
 - (B) \$5 400
 - (C) \$6 100
 - (D) \$6 800
- 7 Which of the following is a false statement?
 - (A) Population mean is denoted by \bar{x}
 - (B) Population is the entire data set.
 - (C) Sample is part of a population.
 - (D) Sample statistics are a measurable characteristic of a sample.

8 The box-and-whisker plot shows the assessment results of 160 students.

Which of the following statements is false?

- (A) Data is negatively skewed.
- (B) Median score is 40.
- (C) 120 students achieved a score greater than the lower quartile.
- (D) 40 students achieved a score greater than 46.
- 9 Adelaide is located at (35°N, 139°E) and Yokohama is located at (35°S, 139°E). What is the distance between Adelaide and Yokohama to the nearest kilometre? (Assume the radius of the earth is 6400 km).
 - (A) 559
 - (B) 3910
 - (C) 7819
 - (D) 15 526
- 10 There are four people sharing a house. Each person has a shower each day and uses 120 L of water per shower. Water costs \$2.34 per kilolitre (kL). It is decided to install a water-efficient showerhead that uses 35% less water. How much could be saved on water costs each year?
 - (A) \$41
 - (B) \$143
- (C) \$266
- (D) \$410
- 11 What is the slope of the least-squares regression line given r = 0.561, $s_x = 1.987$ and $s_y = 4.579$?
 - (A) 0.24
 - (B) 1.29
 - (C) 7.13
 - (D) 16.21

12 In the diagram, O represents the centre of the earth, and Q lies on both the Equator and the Greenwich Meridian.

What is the latitude and longitude of point P?

- (A) 35°N 105°E
- (B) 35°N 105°W
- (C) 55°N 105°E
- (D) 55°N 105°W
- 13 A pair of players is to be selected from 7 people. How many different pairs of players can be selected?
 - (A) 7
 - (B) 14
 - (C) 21
 - (D) 42
- 14 A 120 watt ceiling fan is run for 24 hours each day. If electricity is charged at 24.8 c/kWh, what is the cost of running the ceiling fan for 30 days, to the nearest cent?
 - (A) \$15.68
 - (B) \$21.43
 - (C) \$86.40
 - (D) \$2142.73
- 15 A computer was purchased for \$2400 on 11 June 2013 using a credit card. Simple interest is charged at a rate of 18.75% per annum for purchases using a credit card. No other purchases were made and there was no interest-free period. The period for which interest was charged included the date of purchase and the date of payment. What amount was required to pay the account in full on 19 July 2013?
 - (A) \$2446.85
 - (B) \$2447.20
 - (C) \$2448.08
 - (D) \$2449.32

16 Lachlan earns \$81 500 in a year. His allowable deductions total \$4 000. Using the table below, which of the following expressions represents his total tax payable?

Taxable income	Tax payable
0 - \$18 200	Nil
\$18 201 - \$37 000	Nil + 19 cents for each \$1 over \$18 200
\$37 001 - \$80 000	\$3572 + 32.5 cents for each \$1 over \$37 000
\$80 001 - \$180 000	\$17 550 + 37 cents for each \$1 over \$80 000
\$180 001 and over	\$54 550 + 45 cents for each \$1 over \$180 000

- (A) $$3572 + 40500×0.325
- (B) \$3572 + \$44 500 × 0.325
- (C) $$17550 + 1500×0.37
- (D) $$17550 + 5500×0.37
- 17 What is the best description between living standards and life expectancy?
 - (A) Constant correlation
 - (B) Negative correlation.
 - (C) Positive correlation.
 - (D) Zero correlation.
- 18 What is the size of the smallest angle (θ) in the triangle below?

(A)
$$\cos \theta = \frac{16^2 + 18^2 - 10^2}{2 \times 10 \times 16}$$

(B)
$$\cos \theta = \frac{10^2 + 18^2 - 16^2}{2 \times 10 \times 18}$$

(C)
$$\cos\theta = \frac{10^2 + 18^2 - 16^2}{2 \times 10 \times 16}$$

(D)
$$\cos\theta = \frac{16^2 + 18^2 - 10^2}{2 \times 16 \times 18}$$

19 The monthly rainfall for Madison City is shown below.

In which month was there the smallest difference in rainfall between 2012 and 2013?

(A) March

(B) May

(C) June

- (D) August
- 20 A double radar chart is constructed with 12 sectors. What is the size of the angle in each sector?
 - (A) 10
 - (B) 18
 - (C) 30
 - (D) 36
- 21 Oscar buys a mobile phone for \$800. He pays it off monthly over 3 years at an interest rate of 9.5% p.a. How much per month will he pay?
 - (A) \$29
 - (B) \$86
 - (C) \$228
 - (D) \$343
- 22 A factory produces bags of cashews. The weights of the bags are normally distributed, with a mean of 900 g and a standard deviation of 50 g. What is the best approximation for the percentage of bags that weigh more than 1000 g?
 - (A) 0%
 - (B) 2.5%
 - (C) 5%
 - (D) 16%

- 23 Which of the following correctly expresses c as the subject of $A = bc^2 + d$?
- (A) $c = \pm \sqrt{\frac{A-d}{b}}$
- (B) $c = \pm \frac{\sqrt{A-d}}{b}$
- (C) $c = \pm \sqrt{\frac{A}{b}} a$
- (D) $c = \pm \sqrt{\frac{A}{b} d}$
- 24 The solid shown is made of a cylinder with a hemisphere (half a sphere) on the right.

What is the total surface area of the solid, to the nearest square centimetre?

- (A) 707 cm²
- (B) 785 cm^2
- (C) 864 cm²
- (D) 942 cm^2
- 25 The speed (y), in km/h, of a ski lift is inversely proportional to the weight (w kg) it carries. A ski lift carrying a weight of 320 kg can travel at 16 km/h. What is the speed of the ski lift if weight decreases to 250 kg?
 - (A) $\frac{16 \times 250}{320}$
 - (B) $\frac{16 \times 320}{250}$
 - (C) $\frac{250 \times 320}{16}$
 - (D) $\frac{320}{16 \times 256}$

Section II

75 marks
Attempt Questions 26° 30
Allow about 1 hour and 55 minutes for this section

Answer the questions in the spaces provided.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 26 (15 marks)

(b)

Marks

(a) Sophie borrowed \$192 000 at an interest rate of 5.25% per annum compounded monthly. The repayments have been set at \$900 per month.

Months (n)	Principal (P)	Interest (I)	Repayment	Balance
1	\$192 000	\$840	\$900	
2			\$900	

(i)	Explain why the interest charged for the first month is \$840.	1
\ <u>-</u> /	Emphani way the market cambon and a control of the	

(ii)	How much is owed at the end of the first month?

(iii)	What is the interest charged for the second month? Answer to the nearest cent.	2
	nearest cent.	

Simplify $(6xy^2)^3 \times (2x^4y^6)^2$	2

(c) A riverside campsite is shown below

tions of Simpso er correct to the		ne area of the	
 	 		

(d) Draw the graph of y = -2x - 3 and find the gradient and y-intercept.

2

(e) The graph is part of an electricity account issued to a customer.

(i)	How many times per year is the electricity meter read?

(ii)	In which quarter was the usage of the electricity least?	1

(iii)	How much electricity did this household use per day in the June quarter?

(f)	A credit card has a daily simple interest rate of 0.059% per day (no interest free period). Find the interest charged on \$2210 for 14 days. Answer correct to the nearest cent.						
							

stion 2	7 (15 marks)
Alex i	s planning a trip to Toronto (44°N 79°W) from Sydney (34°S 151°E). What is the difference in time between Toronto and Sydney?
(ii)	Alex plans to leave Sydney at 6 am on a Sunday. What is the time in Toronto when he leaves Sydney?
All mo	agram shows a semicircle, from which a trapezium has been cut. easurements are in centimetres. 7 Not to scale 9 20 20 20 20 20 20 20 20 20 20 20 20 20
Clark'	is the area of the remaining shape, to the nearest square centimetre? s rule $\left(\text{Dosage} = \frac{\text{Weight (kg)} \times \text{Adult dose}}{70}\right)$ is used to calculate dosages dicine for children. What is the medication dose for Tyler, if he weighs

(b)

(d) The diagram shows three towns. Town A is due west of town B and the bearing of town C from town B is 025'.

(i)	What is the size of ∠ABC?	

(ii)	Find the distance (to nearest kilometre) from town \boldsymbol{A} to town \boldsymbol{C} .	2
		
		<u> </u>

(iii)	What is the bearing of town C from town A ?					
		1.5.5				

(e) In a game two unbiased coins are tossed. A player outlays \$30 and if both coins show tails the player is paid \$48, if both coins show heads the player is paid \$60.

(i)

(ii)

what is t	ne probabilit	y or miowi	ng two tails?		
<u> </u>					

What is the expected return from \$300 for this game?	2

Qu	Question 28 (15 marks)							
(a)	Solve (i)	the following equations: $9x-2=-11$	1					
	(ii)	2(a+5) = 28	 1					
	` ,							
	(iii)	$\frac{4y}{3} + 3y - 5 = 0$	1 -					
(b)		gauge registered 60 mm of rain during a storm. The rain fell on a shed rectangular roof that measures 25 metres by 10 metres. How many litres of water fell on the shed? Answer to the nearest litre						
	(ii)	The water that fell on the shed was collected in an empty cylindrical tank with a diameter of 6 metres. What depth of water will be in the tank? Answer correct to two decimal places.	2					
			 					

(c) The table below shows forearm length and hand length.

Forearm (in cm)										
Hand (in em)	17.3	17.6	18.2	18,4	19	19.4	19.8	20.1	20.4	20.6

(i) Draw a scatterplot using the above table.

(ii) Draw a line of best fit on the scatterplot.

(iii) Describe the correlation between the forearm length and hand length.

(d) Two cities lie on the same meridian of longitude and are 4356 km apart. One city is located on the parallel of latitude of 47°N. What is the latitude of the second city if it is south of the first city?

second city	if it is south o	of the first ci	ty?		

			 -	 	

	Nicholas pay back altogether?
What is the interes	est paid for this loan?
	valent flat interest rate charged per annum on th
What is the equiv	prrect to 1 decimal place.
What is the equivolent loan? Answer co	orrect to 1 decimal place.
What is the equivolent loan? Answer co	orrect to 1 decimal place.
What is the equivolent? Answer co	orrect to 1 decimal place.
What is the equivoloan? Answer co	orrect to 1 decimal place.
What is the equivolan? Answer co	orrect to 1 decimal place.

Question	29	(15	marks)
----------	----	-----	--------

Marks

(a) The table shows the present value interest factors for some monthly interest rates and loan periods in months.

2

2

Present value of \$1							
Period	0.0060	0.0065	0.0070	0.0075			
46	40.09350	39.64965	39.21263	38.78231			
47	40.84841	40.38714	39.93310	39.48617			
48	41.59882	41,11986	40.64856	40.18478			
49	42.34475	41.84785	41.35905	40.87820			

Hayley borrows \$16 000 for a car. She arranges to repay the loan with monthly repayments over 4 years. She is charged 8.4% per annum interest. Using the table, calculate the amount of interest Hayley will pay over the term of the loan

(b)	The capture-recapture technique was used to estimate the population of
	penguins in 2013.

- 50 penguins were caught, tagged and released.
- Later, 110 penguins were caught at random.
- 20 of these 110 penguins had been tagged.

The estimated population of the penguins in 2013 was 13% less than the estimated population for 2012.

What was	s the estir	nated popu	iation for 201	127	
					
			- :=		

(i)	In a class test Charlie has a z-score of 2. What does that mean?
(ii)	The mean for the test is 64% and the standard deviation is 12.5. Hannah obtains a z-score of -2. What is her mark?
(iii)	Jacob has a mark of 51.5%. What is his z-score?
(iv)	Lucy said she had a z-score of 3 but Hannah is unconvinced. Why?
On a l	biased coin, the probability of throwing a head is 60%. The coin is I twice. What is the probability of at least one head being tossed?
free c	nas a mobile phone contract that charges a monthly access fee of \$79, alls \$250, flagfall \$0.35 and call rate of \$0.45 per 30 second. What is onthly charge if Jack made 300 calls whose duration was less than 30 ds?

		2x-	3y = -1			
		x +	2y = 10			
		-		•••		
						-
						
			<u>-</u>			
			·-····································			
			• • • • • • • • • • • • • • • • • • • •			
		·				
<u> </u>						
Life expectar decade. Is thi	ncy and gym is strong relat	membersh tionship be	ps have both	nrisen stron o correlatio	ngly in the	last sal?
decade. Is thi	ncy and gym is strong relat	membersh tionship be	ps have both	nrisen stroi o correlatio	ngly in the	last sal?
Life expectar decade. Is thi	ncy and gym is strong relat	membersh tionship be	ps have both	nrisen stroi o correlatio	ngly in the	last sal?
decade. Is thi	ncy and gym is strong relat	membersh tionship be	ps have both tween the tw	n risen stron o correlatio	ngly in the	last sal?
decade. Is thi	ney and gym is strong rela	membersh tionship be	tween the tw	o correlation	ngly in the	last sal?
decade. Is thi	ncy and gym is strong relai	membersh tionship be	tween the tw	n risen stroi o correlatio	ngly in the	last sal?
decade. Is thi	ncy and gym is strong relat	membersh tionship be	tween the tw	o correlation	ngly in the	last sal?
decade. Is thi	ney and gym is strong relat	membersh tionship be	tween the tw	o correlation	ngly in the	last sal?
decade. Is thi	ney and gym is strong relat	membersh tionship be	tween the tw	o correlation	ngly in the	last sal?
decade. Is thi	ncy and gym is strong rela	tionship be	tween the tw	o correlation	ngly in the	last sal?
Life expectar decade. Is thi	ney and gym is strong rela	membersh tionship be	tween the tw	o correlation	ngly in the	last sal?

give	n day. The	number of messa	ges found were	f text messages received on 18, 3, 17, 24, 37, 1, 23, 16, 4, 9, 10, 22 and 12.
)		the grouped frequ		
	Class	Class Centre	Frequency	Cumulative Frequency
	0–9			`
	10–19			
	20–29			
	30-39			
ii)	What is the	ne modal class?		
v)		ne mean number c orrect to one deci		s?
v)		oopulation standar orrect to one deci		

2

(b) Lucas's watering can is initially filled with 4 litres of water. However the watering can has a small hole in the base and is leaking at a rate of 0.2 litres per minute.

(i)	Write a linear equation in the form $V = mt + b$ to describe this	
	situation.	

(ii) What volume of water remains after 150 seconds?	1
--	---

(iii)	How long would it take for all the water to leak out?	1

(c) Harry is constructing a plane table radial survey of the field ABCDE.

Harry starts with the following steps.

- 1. Table and large sheet of paper are placed in the centre of the field.
- 2. A point P is marked on the paper roughly near the centre.

Describe how H	arry would co	mplete the	survey.	
-				

(d) A tennis competition involves every player having a match against every other player. The number of matches is calculated using the formula:

$$m = \frac{1}{2} \left(p^2 - p \right)$$

where m is the number of matches and p the number of players.

i) Complete the table of values for the above formula.

m	1	2	3	4	5	6
p						

(ii) Plot the points from the table of values. Join the points.

- (iii) Use the model to predict the number of matches for 7 players.
- (iv) Explain why you would not use the model when p is less than one.

End of paper

FORMULAE AND DATA SHEET

Financial Mathematics

Simple interest

I = Prn

- P is initial amount
- is interest rate per period, expressed as a decimal
- n is number of periods

Compound interest

 $A = P(1+r)^n$

- A is final amount
- P is initial amount
- is interest rate per period, expressed as a decimal
- n is number of compounding periods

Present value and future value

$$PV = \frac{FV}{(1+r)^n}, FV = PV(1+r)^n$$

- is interest rate per period, as expressed as a decimal
- n is number of compounding periods

Straight-line method of depreciation

$$S = V_0 - Dn$$

- S is salvage value of asset after n periods
- Vo is initial value of asset
- D is amount of depreciation per period
- n is number of periods

Declining-balance method of depreciation

$$S = V_0(1-r)^n$$

- Is salvage value of asset after n periods
- V₂ is initial value of asset
- is depreciation rate per period, expressed as a decimal
- n is number of periods

Data Analysis

Mean of a sample

$$\overline{x} = \frac{\text{sum of scores}}{\text{number of scores}}$$

z-score

For any score x,

$$z = \frac{x - \overline{\lambda}}{s}$$

- x is mean
- s is standard deviation

Outlier(s)

score(s) less than $Q_L = 1.5 \times IQR$ or score(s) more than $Q_{IJ} + 1.5 \times IQR$

 Q_L is lower quartile

 Q_{II} is upper quartile

IQR is interquartile range

Least-squares line of best fit

 $y = \text{gradient} \times x + y - \text{intercept}$

gradient = $r \times \frac{\text{standard deviation of } y \text{ scores}}{\text{standard deviation of } x \text{ scores}}$

y-intercept = \overline{y} – (gradient $\times \overline{x}$)

- is correlation coefficient
- \vec{x} is mean of x score
- \overline{y} is mean of y scores

Normal distribution

- pproximately 68% of scores have z-scores between -1 and 1
- pproximately 95% of scores have z-scores between –2 and 2
- pproximately 99.7% of scores have z-scores between -3 and 3

Spherical Geometry

Circumference of a circle

 $C = 2\pi r$ of $C = \pi d$

r is radius

d is diameter

Arc length of a circle

$$I = \frac{\theta}{360} 2\pi$$

- r is radius
- heta is number of degrees in central angle

Radius of Earth

(taken as) 6400 km

Time differences

For calculation of time differences using longitude: 15' = 1 hour time difference

Area

Circle

$$A = \pi r^2$$

r is radius

Sector

$$A = \frac{\theta}{360} \pi r^2$$

- r is radius
- heta is number of degrees in central angle

Annulus

$$A = \pi (R^2 - r^2)$$

- R is radius of outer circle
- r is radius of inner circle

Trapezium

$$A = \frac{h}{2}(a+b)$$

h is perpendicular height

a and b are the lengths of the parallel sides

Area of land and catchment areas

unit conversion: 1 ha = $10\ 000\ \text{m}^2$

Surface Area

Sphere

$$A = 4\pi r^2$$

r is radius

Closed cylinder

$$A = 2\pi r^2 + 2\pi rh$$

- r is radius
- h is perpendicular height

Volume

Prism or cylinder

$$V = Ah$$

- r is radius
- h is perpendicular height

Pyramid or cone

$$V = \frac{1}{3}Ah$$

- A is area of the base
- h is perpendicular height

Volume and capacity

unit conversion: $1 \text{ m}^3 = 1000 \text{ L}$

Approximation Using Simpson's Rule

Area

$$A \approx \frac{h}{3}(d_f + 4d_m + d_l)$$

- h distance between successive measurements
- I_f is first measurement
- d... is middle measurement
- d_r is last measurement

Volume

$$V \approx \frac{h}{3}(A_L + 4A_m + A_R)$$

- h distance between successive measurements
- ${\cal A}_L$ is area of left end
- $A_{\mathcal{M}}$ is area of middle
- A_{R} is area of right end

Trigonometric Ratios

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$\cos\theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$$

Sine rule

In AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

In $\triangle ABC$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$
or
$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

Units of Memory and File Size

1 byte = 8 bits
1 kilobyte =
$$2^{10}$$
 bytes = 1024 bytes
1 megabyte = 2^{20} bytes = 1024 kilobytes
1 gigabyte = 2^{30} bytes = 1024 megabytes
1 terabyte = 2^{40} bytes = 1024 gigabytes

Blood Alcohol Content Estimates

$$BAC_{MMe} = \frac{(10N - 7.5H)}{6.8M}$$
 or

$$BAC_{Fernale} = \frac{(10N - 7.5H)}{5.5M}$$

N is number of standard drinks consumed

H is number of hours of drinking

M is person's mass in kilograms

Distance, Speed and Time

$$D = ST$$
, $S = \frac{D}{T}$, $T = \frac{D}{S}$

average speed = $\frac{\text{total distance travelled}}{\text{total time taken}}$

stopping distance =
$$\begin{cases} reaction-time \\ distance \end{cases} + \begin{cases} braking \\ distance \end{cases}$$

Probability of an Event

The probability of an event where outcomes are equally likely is given by:

$$P(\text{event}) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}$$

Straight Lines

Gradient

$$m = \frac{\text{vertical change in position}}{\text{horizontal change in position}}$$

Gradient-intercept form

$$y = mx + b$$

m is gradient

b is y-intercept

ACE Examination Practice Paper 4 HSC Mathematics General 2 Yearly Examination

Worked solutions and marking guidelines

Section:	1	
	Solution	Criteria
1	$6x^2 + 2x + 4x^2 = 10x^2 + 2x$	1 Mark: C
2	$0.5 \text{ TB} = 0.5 \times 2^{40} \text{ B}$ $\approx 5.5 \times 10^{11}$	1 Mark: C
3	Gradient = $\frac{\text{Rise}}{\text{Run}}$ = $\frac{c}{d}$	1 Mark: C
4	$P(E) = \frac{4}{229}$	1 Mark: D
5	$\tan 40^\circ = \frac{AB}{15}$ $AB = 15 \tan 40 = 12.58649447 = 13 \text{ m}$	1 Mark: C
6	$S = V_0 - Dn$ = 7500 - 700 \times 3 = \$5400	1 Mark: B
7	Population mean is denoted by μ not \overline{x} (sample mean)	1 Mark: A
8	 (A) Data is more on the left side. Data is positively skewed* (B) Median is 40 (middle line of the box)√ (C) 75% of 160 = 0.75×160 = 120 √ (D) 25% of 160 = 0.25×160 = 40 √ 	1 Mark: A
9	Latitude difference = $35 + 35 = 70$ $I = \frac{\theta}{360} \times 2\pi r$ $= \frac{70}{360} \times 2 \times \pi \times 6400$ $= 7819.075049 \approx 7819 \text{ km}$	1 Mark: C
10	Water costs = $4 \times 365 \times 0.120 \times $2.34 = 409.968 Savings = $0.35 \times 409.968 = $$143.4888 \approx 143	1 Mark: B

		,
11	$m = r \frac{s_y}{s_x}$ $= 0.561 \times \frac{4.579}{1.987}$ $= 1.29$	1 Mark: B
12	35°N 105°E	1 Mark: A
13	Number of selections = $\frac{7 \times 6}{2}$ = 21	1 Mark; C
14	Electricity = $0.120 \times 24 \times 30$ = 86.4 kWh Cost = $$0.248 \times 86.4$ = $$21.4272$ $\approx 21.43	1 Mark: B
15	Number of days from 11 Jun to 19 Jul is 39. I = Prn = \$2400× $\frac{0.1875}{365}$ ×39 = 48.08219178 = \$48.08 Amount due is \$2448.08	1 Mark: C
16	Tax payable = \$81 500 - \$4 000 = \$77 500 Taxable income between \$37 001 and \$80 000 (3 rd line) \$3572 + \$40 500 × 0.325	1 Mark: A
17	A rise in the living standards results in a rise in life expectancy. Positive correlation.	1 Mark: C
18	Smallest angle is opposite smallest side $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ $\cos \theta = \frac{(16^2 + 18^2 - 10^2)}{(2 \times 16 \times 18)}$	1 Mark: D
19	The smallest difference is August (50 – 30 = 20 mm)	1 Mark; D
20	Sector angle = 360 + 12 = 30°	1 Mark: C

21	$I = Prn$ = \$800 \times 0.095 \times 3 = \$228 Monthly repayment = $\frac{$800 + $228}{3 \times 12}$ = 28.5555 $\approx 29	1 Mark: A
22	$z = \frac{x - \overline{x}}{s}$ $= \frac{1000 - 900}{50}$ $= 2$ 95% of scores have a z-score between -2 and 2 Therefore 2.5% have a z-score greater than 2.	1 Mark: B
23	$A = bc^{2} + d$ $bc^{2} = A - d$ $c^{2} = \frac{A - d}{b}$ $c = \pm \sqrt{\frac{A - d}{b}}$	1 Mark: A
24	$A = \frac{1}{2} \times 4\pi r^{2} + \pi r^{2} + 2\pi rh$ $= 3\pi r^{2} + 2\pi rh$ $= 3\pi \times 5^{2} + 2\pi \times 5 \times 20$ $= 863.937979$ $\approx 864 \text{ cm}^{2}$	1 Mark: C
25	$v = \frac{k}{w}$ $320 = \frac{k}{16}$ $k = 16 \times 320$ Therefore $v = \frac{k}{w}$ $= \frac{16 \times 320}{250}$	1 Mark: B

	n II	
	Solution	Criteria
26(a) (i)	$A = P(1+r)^n$ = \$192000× $\left(1 + \frac{0.0525}{12}\right)^1$ = \$192 840	1 Mark: Correct answer.
	I = A - P = \$192840 - \$192000 = \$840	
	Interest charged is \$840	
26(a) (ii)	Balance = \$192000 + \$840 - \$900 = \$191 940 Sophie owes \$191 940 at the end of 1 st month	i Mark: Correct answer.
26(a) (iii)	$A = P(1+r)^n$	2 Marks: Correct answer.
	$=\$191940 \times \left(1 + \frac{0.0525}{12}\right)^{1} = \192779.74 $I = A - P$ $=\$192779.74 - \$191940 = \$839.74$ Interest charged is \$839.74	1 Mark: Finds the amount owing or shows some understanding.
26(b)	$(6xy^{2})^{3} \times (2x^{4}y^{6})^{2} = 216x^{3}y^{6} \times 4x^{8}y^{12}$ $= 864x^{11}y^{18}$	2 Marks: Correct answer. 1 Mark: Applies one index law correctly.
26(c)	$A = \frac{h}{3}(d_f + 4d_m + d_i)$ $= \frac{40}{3}(160 + 4 \times 175 + 180) + \frac{40}{3}(180 + 4 \times 140 + 100)$ $= 25066.6666 \approx 25067 \text{ m}^2$	2 Marks: Correct answer. 1 Mark: Uses Simpsons with o correct value.
26(d)	y = mx + b Gradient is -2 and y-intercept is -3 y = -2x - 3	2 Marks: Correct answer.
	y 3 2 1 1 2 1 2 3 4 3 2 1 2 3 3 4 3 4 4 5 6 7 7 8 7 8 8 8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Mark: Correct graph or finds the gradient and y-intercept.
	3	

26(e)		1 Mark: Correct
(i)	Electricity meter is read 4 times a year.	answer.
26(e) (ii)	March quarter was the least (5 kWh).	1 Mark: Correct answer.
26(e) (iii)	June quarter consumption is 8 kWh per day.	1 Mark: Correct answer.
26(f)	I = Prn	2 Marks: Correct answer.
	=\$2210×0.00059×14	1 Mark: Uses the
	=\$18.2546	simple formula
	≈ \$18.25 Interest owing is \$18.25.	with at least one correct value.
27(-)	· · · · · · · · · · · · · · · · · · ·	
27(a) (i)	Longitude difference = 79° + 151° = 230° Time difference = 230 × 4	1 Mark; Correct answer.
	= 920 min or 15 h 20 min	diistroi:
27(a)	6 am	1 Mark: Correct
(ii)	Toronto Sydney	answer.
	79°W 151°E	
	West - East +	
	Toronto is west of Sydney. Subtract the time difference. Toronto = $6.00 \text{ am} - 15 \text{ h} 20 \text{ min}$	
i l	= 2.40 pm on Saturday	
27(b)	Semicircle $A = \frac{1}{2}\pi r^2 = \frac{1}{2} \times \pi \times 10^2 = 157.079327$ cm ²	3 Marks: Correct answer.
	Trapezium $A = \frac{1}{2}(a+b)h = \frac{1}{2} \times (7+9) \times 8 = 64 \text{ cm}^2$	2 Marks: Makes significant
	Shaded area = 157.07964	progress. 1 Mark: Finds the
	= 93.079	area of the
	≈ 93 cm ²	semicircle or the trapezium.
27(c)	Dosage = $\frac{\text{Weight (kg)} \times \text{Adult dose}}{70}$	2 Marks: Correct
	Dosage = ${70}$	answer.
	$=\frac{28\times15}{70}$	1 Mark:
	• •	Substitutes one correct value into
	=6 mL	the formula.
27(d)	$\angle ABC = 90^{\circ} + 25^{\circ}$	1 Mark: Correct
(i)	=115°	answer.
	259 50 km	
	/ //	
	A 60 km B	
L	24 UU AIN	l

27(d) (ii) $b^2 = a^2 + c^2 - 2ac\cos B$ $AC^2 = 50^2 + 60^2 - 2x + 50 \times 60 \times \cos 115^*$ $AC = 92.92851861$ $\approx 93 \text{ km}$ The distance form town A to town C is 93 km. 27(d) (iii) $\frac{27(d)}{50} = \frac{\sin 115^*}{50} = \frac{\sin 115^*}{93}$ 2 Marks: Correct answer. 1 Mark: Uses the cosine rule with at least one correct value. 28(a) (i) $9x - 2 = -11$ $9x = -9$ $x = -1$ 28(a) (iii) $3x(\frac{4y}{3} + 3y - 5) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13}$ or $1\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{$	1	$v = u + c + 2uc \cos \theta$	
$AC^2 = 50^2 + 60^2 - 2 \times 50 \times 60 \times \cos 115^5$ $AC = 92.92851861$ $\approx 93 \text{ km}$ The distance form town A to town C is 93 km. 27(d) (iii) $\frac{27(d)}{\sin \angle BAC} = \frac{\sin 115^5}{93}$ $\sin \angle BAC = \frac{50 \sin 115^5}{93}$ $\angle BAC = 29.1607955 \approx 29^5$ Bearing = 90° - 29° = 61° Bearing of town C from town A is 061°. 27(e) (ii) $\frac{27(e)}{(iii)} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ Financial expectation $= \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) 28(a) (ii) $\frac{28(a)}{2} = \frac{28(a)}{2}$ (iii) $\frac{2(a+5) = 28}{2}$ (iii) $\frac{28(a)}{3} = \frac{2(a+5) = 28}{2}$ (iii) $\frac{28(a)}{3} = \frac{3}{2}$ $\frac{2(a+5) = 28}{2}$ (iii) $\frac{28(a)}{3} = \frac{3}{2}$ $\frac{28(a)}{4y + 9y - 15} = 0$ $\frac{13y = 15}{y = \frac{15}{13}} \text{ or } 1\frac{2}{13}$	(11)	$AC^2 = 50^2 + 60^2 - 2 \times 50 \times 60 \times \cos 115^*$	answer.
$ \begin{array}{c} AC = 92.92851861 \\ \approx 93 \text{ km} \end{array} $ The distance form town A to town C is 93 km.			1 4 3 5 4 77 11
$ \begin{array}{c} \approx 93 \text{ km} \\ \text{The distance form town } A \text{ to town } C \text{ is } 93 \text{ km}. \end{array} \qquad \begin{array}{c} \text{least one correct value.} \\ 27(d) \\ \text{(iii)} \\ \end{array} \qquad \begin{array}{c} \text{Use the sine rule to find } \angle BAC \\ \frac{\sin \angle BAC}{50} = \frac{\sin 115^{\circ}}{93} \\ \sin \angle BAC = \frac{50 \sin 115^{\circ}}{93} \\ \angle BAC = 29.1607955 \approx 29^{\circ} \\ \text{Bearing of town } C \text{ from town } A \text{ is } 061^{\circ}. \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Uses the sine rule with at least one correct value.} \\ \text{Bearing of town } C \text{ from town } A \text{ is } 061^{\circ}. \end{array} \qquad \begin{array}{c} 27(e) \\ \text{(i)} \\ \end{array} \qquad \begin{array}{c} P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \text{Sinacial expectation} \\ \end{array} \qquad \begin{array}{c} 27(e) \\ \text{(ii)} \\ \end{array} \qquad \begin{array}{c} \text{Expected return } = \$12 \times 10 = \$120 \text{ (10 games for $\$300)} \end{array} \qquad \begin{array}{c} 2 \text{ Marks: Correct answer.} \\ \text{I Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 28(a) \\ 2(a+5) = 28 \\ 2a+5 = 14 \\ a=9 \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 28(a) \\ 2(a+5) = 28 \\ 2a+5 = 14 \\ a=9 \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} \\ \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Correct answer.} $		AC = 92.92851861	
27(d) (iii) Use the sine rule to find $\angle BAC$ $\frac{\sin \angle BAC}{50} = \frac{\sin 115^{\circ}}{93}$ $\frac{\sin \angle BAC}{2} = \frac{\sin 115^{\circ}}{93}$ 1 Mark: Uses the sine rule with at least one correct value. 27(e) (i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 1 Mark: Correct answer. 27(e) (ii) $= (\frac{1}{4} \times \$48) + (\frac{1}{4} \times \$60) + (\frac{1}{2} \times -\$30) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) 28(a) (ii) $= (3 \times 38) = 38$ 28(a) (iii) $= (3 \times 38) = 38$ 3 $= (3 \times 38) = (3 \times 38) = 38$ 3 $= (3 \times 38) = (3$		≈ 93 km	
(iii) $\frac{\sin \angle BAC}{50} = \frac{\sin 115^{\circ}}{93}$ $\sin \angle BAC = \frac{29.1607955 \approx 29^{\circ}}{93}$ $\angle BAC = 29.1607955 \approx 29^{\circ}$ Bearing $= 90^{\circ} - 29^{\circ} = 61^{\circ}$ Bearing of town C from town A is 061° . $\frac{27(e)}{(i)}$ (i) $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}$ Financial expectation $= \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12$ Expected return $= \$12 \times 10 = \120 (10 games for \$300) $\frac{28(a)}{(i)}$ (ii) $\frac{9x - 2 = -11}{9x = -9}$ $x = -1$ $\frac{28(a)}{(ii)}$ $\frac{2(a+5)}{2} = \frac{28}{2}$ $a+5 = 14$ $a = 9$ $\frac{28(a)}{(iii)}$ $\frac{3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3}{4y + 9y - 15 = 0}$ $\frac{15}{13} \text{ or } 1\frac{2}{13}$ answer. I Mark: Uses the sine rule with at least one correct value. 2 Marks: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer. 2 Marks: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer. 2 Marks: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer.]	The distance form town A to town C is 93 km.	value.
$\frac{\sin \angle BAC}{50} = \frac{\sin 115^{\circ}}{93}$ $\sin \angle BAC = \frac{50 \sin 115^{\circ}}{93}$ $\angle BAC = 29.1607955 \approx 29^{\circ}$ Bearing = $90^{\circ} - 29^{\circ} = 61^{\circ}$ Bearing of town C from town A is 061° . $\frac{27(e)}{(i)}$ $\frac{(i)}{(i)}$ Financial expectation $= \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) $\frac{28(a)}{(i)}$ $\frac{9x - 2 = -11}{9x = -9}$ $x = -1$ $\frac{28(a)}{(ii)}$ $\frac{2(a + 5) = 28}{2}$ $\frac{2(a + 5) = 28}{2}$ $\frac{2(a + 5) = 4}{a = 9}$ $\frac{28(a)}{(iii)}$ $\frac{3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3}{4y + 9y - 15 = 0}$ $\frac{15}{13} \text{ or } 1\frac{2}{13}$	` '	Use the sine rule to find $\angle BAC$	
$ sin \angle BAC = \frac{50 \sin 115^{\circ}}{93} $ $ \angle BAC = 29.1607955 \approx 29^{\circ} $ Bearing = 90° - 29° = 61° Bearing of town C from town A is 061°. $ \frac{27(e)}{(i)} $ Financial expectation $ = \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12 $ Expected return = $\$12 \times 10 = \120 (10 games for \$300) $ \frac{28(a)}{(i)} $ $ \frac{9x - 2 = -11}{9x = -9} $ $ x = -1 $ $ \frac{28(a)}{(ii)} $ $ \frac{2(a + 5)}{2} = \frac{28}{2} $ $ a + 5 = 14 $ $ a = 9 $ $ \frac{28(a)}{(iii)} $ $ \frac{3 \times \left(\frac{4y}{3} + 3y - 5\right)}{13y = 15} $ $ y = \frac{15}{13} \text{ or } 1\frac{2}{13} $ 1 Mark: Uses the sine rule with at least one correct value. 1 Mark: Correct answer. 2 Marks: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer.	(111)	sin \(ZBAC \) sin115°	answer.
$\sin \angle BAC = \frac{50\sin 115}{93}$ $\angle BAC = 29.1607955 \approx 29^{\circ}$ Bearing = 90° - 29° = 61° Bearing of town C from town A is 061°. $27(e)$ (i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ $27(e)$ (ii) $= \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) $28(a)$ (i) $9x - 2 = -11$ $9x = -9$ $x = -1$ $28(a)$ (ii) $2(a+5) = 28$ $2(a+5) = 28$ $2(a+5) = 14$ $a = 9$ $28(a)$ (iii) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$ $x = \frac{15}{13} \text{ or } 1\frac{2}{13}$			1 Marks Heas the
		$\sin \angle BAC = \frac{50 \sin 115^{\circ}}{}$	
Bearing = 90° - 29° = 61° Bearing of town C from town A is 061°. 27(e) (i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ $1 \text{ Mark: Correct answer.}$ 27(e) (ii) $= (\frac{1}{4} \times \$48) + (\frac{1}{4} \times \$60) + (\frac{1}{2} \times -\$30) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) 28(a) (i) $9x = -9$ $x = -1$ 28(a) (ii) $2(a+5) = 28$ (iii) $2(a+5) = 28$ $2(a+5) = 28$ $2(a+5) = 4$ $a = 9$ 28(a) (iii) $3 \times (\frac{4y}{3} + 3y - 5) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$		·	
Bearing of town C from town A is 061°. 27(e) (i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 1 Mark: Correct answer. 27(e) (ii) $= (\frac{1}{4} \times \$48) + (\frac{1}{4} \times \$60) + (\frac{1}{2} \times -\$30) = \$12$ Expected return = $\$12 \times 10 = \120 (10 games for \$300) 28(a) (ii) $9x - 2 = -11$ $9x = -9$ $x = -1$ 28(a) (iii) $2(a+5) = 28$ $2(a+5) = 28$ $2(a+5) = 14$ $a = 9$ 28(a) (iii) $3 \times (\frac{4y}{3} + 3y - 5) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$			value.
27(e) (i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 1 Mark: Correct answer. 27(e) (ii) $= (\frac{1}{4} \times \$48) + (\frac{1}{4} \times \$60) + (\frac{1}{2} \times -\$30) = \$12$ 2 Marks: Correct answer. Expected return = $\$12 \times 10 = \120 (10 games for \$300) 1 Mark: Calculates the financial expectation. 28(a) (i) $9x - 2 = -11$ 1 Mark: Correct answer. 28(a) (ii) $9x = -9$ 1 Mark: Correct answer. 28(a) $2(a+5) = 28$ 2 1 Mark: Correct answer. 28(a) $(3x + 3x +$		1	
(i) $P(TT) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ answer. 27(e) (ii) Financial expectation $= (\frac{1}{4} \times \$48) + (\frac{1}{4} \times \$60) + (\frac{1}{2} \times -\$30) = \$12$ I Mark: Calculates the financial expectation. 28(a) $9x - 2 = -11$	07()	Bearing of town C from town A is 061".	
27(e) (ii) Financial expectation $ = \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12 $ Expected return = $\$12 \times 10 = \120 (10 games for \$300) In Mark: Calculates the financial expectation. 28(a) $ 9x - 2 = -11 $ 1 Mark: Correct answer. 28(a) $ (ii) $	` '	$P(TT) = \frac{1}{1} \times \frac{1}{1} = \frac{1}{1}$	
(ii) $ = \left(\frac{1}{4} \times \$48\right) + \left(\frac{1}{4} \times \$60\right) + \left(\frac{1}{2} \times -\$30\right) = \$12 $ answer. $ 1 \text{ Mark: Calculates the financial expectation.} $ $ 28(a) = 9x - 2 = -11 $ $ 9x = -9 $ $ x = -1 $ $ 28(a) = 2(a+5) = 28 $ $ 2(a+5) = 28 $ $ 2(a+5) = 28 $ $ 2(a+5) = 14 $ answer. $ 28(a) = 3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3 $ $ 4y + 9y - 15 = 0 $ $ 13y = 15 $ $ y = \frac{15}{13} \text{ or } 1\frac{2}{13} $ $ 100 = 12 $ answer. $ 1 \text{ Mark: Calculates the financial expectation.} $ $ 1 \text{ Mark: Correct answer.} $ $ 1 \text{ Mark: Correct answer.} $ $ 1 \text{ Mark: Correct answer.} $	Ĺ.,	2 2 4	
		l	
Expected return = \$12×10 = \$120 (10 games for \$300) $ \begin{array}{lll} \text{Expected return} = $12×10 = $120 (10 games for $300) & \text{the financial expectation.} \\ 28(a) & 9x-2=-11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	()	$=\left(\frac{1}{4}\times\$48\right)+\left(\frac{1}{4}\times\$60\right)+\left(\frac{1}{2}\times\$30\right)=\$12$	
28(a) $9x-2=-11$ 9x=-9 x=-1 1 Mark: Correct answer. 28(a) $2(a+5)=282(a+5)=\frac{28}{2}a+5=14a=9 1 Mark: Correct answer. 28(a) 3\times\left(\frac{4y}{3}+3y-5\right)=0\times34y+9y-15=013y=15y=\frac{15}{13} or 1\frac{2}{13}$			the financial
(i) $9x = -9$ answer. $28(a)$ $2(a+5) = 28$ $2(a+5) = \frac{28}{2}$ $a+5 = 14$ answer. (ii) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13}$ or $1\frac{2}{13}$		Expected return = $$12 \times 10 = $120 \text{ (10 games for $300)}$	expectation.
28(a) (ii)		9x-2=-11	
28(a) (ii)	(1)		answer.
(ii) $\frac{2(a+5)}{2} = \frac{28}{2}$ $a+5 = 14$ $a = 9$ 28(a) $(iii) 3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$ answer. 1 Mark: Correct answer.			
$\frac{2(a+5)}{2} = \frac{28}{2}$ $a+5 = 14$ $a = 9$ 28(a) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$		` '	· ·
$a+5=14$ $a=9$ 28(a) $(3 \times (\frac{4y}{3} + 3y - 5) = 0 \times 3$ $4y+9y-15=0$ $13y=15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$	(11)	$\frac{2(a+5)}{2} = \frac{28}{2}$	answer.
28(a) (iii) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ 1 Mark: Correct answer. $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13}$ or $1\frac{2}{13}$		4 4	
28(a) (iii) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ 1 Mark: Correct answer. $4y + 9y - 15 = 0$ $13y = 15$ $y = \frac{15}{13}$ or $1\frac{2}{13}$,,,,	
(iii) $3 \times \left(\frac{4y}{3} + 3y - 5\right) = 0 \times 3$ 4y + 9y - 15 = 0 13y = 15 $y = \frac{15}{13}$ or $1\frac{2}{13}$	28(a)		1 Marks Correct
$4y+9y-15=0$ $13y=15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$		$3 \times \left(\frac{4y}{2} + 3y - 5\right) = 0 \times 3$	
$13y = 15$ $y = \frac{15}{13} \text{ or } 1\frac{2}{13}$			
$y = \frac{15}{13} \text{ or } 1\frac{2}{13}$,
13 13			
000		$y = \frac{13}{13}$ or $1 = \frac{1}{13}$	
() / = (1),	28(b)	V = Ah	2 Marks: Correct
(i) $=25\times10\times0.060=15 \text{ m}^3$ answer.	(i)	$=25\times10\times0.060=15 \text{ m}^3$	
Now $1 \text{ m}^3 = 1 \text{ kL}$ 1 Mark: Finds the volume in terms of		Now $1 \text{ m}^3 = 1 \text{ kL}$	
V = 15 kL = 15 000 L cubic metres.		$V = 15 \text{ kL} = 15\ 000 \text{ L}$	
		15000 litres of water fell on the shed.	

28(b) (ii)	Radius of the tank is 3 m $V = \pi r^2 h$	2 Marks: Correct answer.
	$15 = \pi \times 3^{2} \times h$ $h = \frac{15}{\pi \times 3^{2}}$ $= 0.530516477$ $\approx 0.53 \text{ m (or 53 cm or 530 mm)}$	1 Mark: Shows some understanding.
28(c) (i)	The depth of the water is 0.53 m 20 (E) 19 25.0 26.0 27.0 28.0 29.0 30.0 Foreatm (in cm)	1 Mark: Correct answer.
28(c) (ii)	Line of fit is drawn the above scatterplot.	1 Mark: Correct answer.
28(c) (iii)	High positive correlation.	1 Mark: Correct answer.
28(d)	To find the difference in latitude. $l = \frac{\theta}{360} \times 2\pi r$	2 Marks: Correct answer.
	$4356 = \frac{\theta}{360} \times 2 \times \pi \times 6400$ $\theta = \frac{4356 \times 360}{2 \times \pi \times 6400}$ $= 38.99693993 \approx 39^{\circ}$ Latitude = 47°N - 39° = 8°N Second city is 8°N.	1 Mark: Makes some progress towards the solution.
28(e) (i)	Total paid = $$1776 \times 26 \times 7$ = $$323 232$	1 Mark: Correct answer.
28(e) (ii)	Interest = \$323 232 - \$204 000 = \$119 232	1 Mark: Correct answer.

20(-)		1222
28(e) (iii)	I = Prn	1 Mark: Correct
(111)	$119232 = 204000 \times r \times 7$	answer.
	$r = \frac{\$119232}{\$204000 \times 7}$	
İ	·	
	= 0.0834957≈ 8.4%	
29(a)	$r = 0.084 \div 12 = 0.0070$, $n = 4 \times 12 = 48$ months	2 Marks: Correct
	Intersection value is 40.64856	answer.
	Let the monthly repayment be x .	
ļ ,	$$16000 = 40.64856 \times x$	1 Mark: Finds the intersection value
	$x = \$393.6178797 \approx \393.62	or shows some
	Total repaid = $48 \times \$393.62 = \18893.76	understanding.
ļ	Interest = $$18893.76 - $160000 = 2893.76	
29(b)	Let P be the population of penguins	2 Marks: Correct
	50 20 275	answer.
	$\frac{50}{p} = \frac{20}{110}, \ p = 275$	
	87% of Pop 2012 = 275	1 Mark: Finds the number of
	$0.87 \times \text{Pop } 2012 = 275$	penguins in 2013.
	$Pop 2012 = \frac{275}{0.87} \approx 316$	
29(c) (i)	A z-score of 2 is two standard deviations above the mean.	1 Mark: Correct answer.
29(c)	$x-\overline{x}$	1 Mark: Correct
(ii)	$z = \frac{x - \overline{x}}{s}$	answer.
	x - 64	
	$-2 = \frac{x - 64}{12.5}$	
	$x = (-2 \times 12.5) + 64 = 39$	•
	Hannah's mark is 39%	
29(c)	$z = \frac{x - \overline{x}}{1 - \overline{x}}$	1 Mark: Correct
(iii)	<u> </u>	answer.
	$=\frac{51.5-64}{12.5}=-1$	
	12,7	
	Jacob's z-score is -1	
29(c) (iv)	$z = \frac{x - \overline{x}}{s}$	1 Mark: Correct answer.
	$3 = \frac{x - 64}{12.5}$	
	12.5	
	$x = (3 \times 12.5) + 64 = 101.5$	
	Lucy needs to score 101.5% in the test (impossible).	

29(d)				
	P(HH or HT or TH) = $\frac{6}{10}$	$\frac{60}{20} \times \frac{60}{100} + \frac{60}{100}$	$\times \frac{40}{100} + \frac{40}{100} \times \frac{60}{100}$	2 Marks: Correct answer.
1 1				
	$=\frac{2}{3}$	1 or 84%		1 Mark: Shows
	2.	,	10 \ 21	some
	Alternatively P(Not TT) = $1 - \left(\frac{40}{100} \times \frac{40}{100}\right) = \frac{21}{25}$			understanding of
				the problem.
29(e)	Call charge = $300 \times (0.35)$	+0.45)		1 Mark: Correct
	=\$240			answer.
	Free calls worth \$250.			
	Monthly charge is \$79.00			
29(f)	$2x-3y=-1 \qquad \qquad (1)$			2 Marks: Correct
	$x + 2y = 10 \tag{2}$			answer.
	Multiply equation (2) by	2		1 Mark: Finds the correct value for x
	2x + 4y = 20 (3)			or y. Alternatively
	Subtract equation (3) from	n equation (1)	makes some
	7y = 21	·· · · · · · · · · · · · · · · · · · ·	,	significant
	y=3			progress towards the solution.
	Substitute $y=3$ into equ	, Boraniem		
	$x+2\times3=10$			
	x=4			
	• •	2 (4.2)		
	Solution is $x = 4$ and $y =$			
29(g)	The increase in gym men			2 Marks: Correct answer.
	expectancy to increase. L	_		,
l i	advanced countries due to same time, people have b		•	
} [exercise and so would bu			
	relationship is correlation	18		
30(a)	Totationship is corrotation			1 Mark: Correct
(i)	Class Class Centre	Frequency	Cum Freq	answer.
`	0-9 4.5	7	7	
	10-19 14.5	11	18	
1	20-29 24.5 30-39 34.5	3	24	
1 1	30-39 34.5 27 friends were surveyed			1 Mark; Correct
30(a)		•		answer.
30(a) (ii)	27 Honas Holobal rojea			
(ii)			***	
1 1	Modal class is 10 -19		404 N.S.	1 Mark: Correct answer.
(ii) 30(a)				1 Mark: Correct

30(a) (v)	Population standard deviation $\sigma_n = 9.442628729$ ≈ 9.4	1 Mark: Correct answer.
30(a) (vi)	Less than 10 text messages = $\frac{7}{27} \times 100$ = 25.9259259 $\approx 26\%$	1 Mark: Correct answer.
30(b) (i)	Leaking at 0.2 litres per minute implies $m = -0.2$ V = mt + b V = -0.2t + 4	1 Mark: Correct answer.
30(b) (ii)	t = 150 s or 2.5 min V = -0.2t + 4 $= -0.2 \times 2.5 + 4 = 3.5 \text{ L}$	1 Mark: Correct answer.
30(b) (iii)	V = -0.2t + 4 $0 = -0.2t + 4$ $0.2t = 4$ $t = 20 min$	1 Mark: Correct answer.
30(c)	3. A line (radial line) is drawn on the paper to reflect the line of sight to each corner.4. The distance from the table to each corner is measured using a trundle wheel or tape measure.5. The angle between each radial line is measured.	2 Marks: Correct answer. 1 Mark: One correct statement or shows some understanding
30(d) (i)	m 1 2 3 4 5 6 p 0 1 3 6 10 15	1 Mark: Correct answer.
30(d) (ii)	20 18 16 14 12 10 8 6 4 2	1 Mark: Correct answer.
30(d) (iii)	$m = \frac{1}{2}(p^2 - p) = \frac{1}{2} \times (7^2 - 7) = 21$ The model predicts 21 matches for 7 players.	1 Mark: Correct answer.
30(d) (iv)	P represents the number of players. When there is one player there are no matches. Clearly p must be a positive whole number and negative values have no meaning.	1 Mark: Correct answer.