GEOMETRICAL APPLICATIONS OF CALCULUS

- 1) Find all values of x for which the curve $y = 2x^2 - 8x + 3 = 0$ is increasing.
- Find the domain over which the function $f(x) = 4 x^2$ is decreasing. 2)
- Find the stationary point on the curve $y = 3x^2 + 12x 11$. 3)
- Show that $f(x) = \frac{2}{x-1}$ has no stationary points. 4)
- The curve $y = ax^2 + bx 1$ has a stationary point at (1,-5). Find values of a and b. 5)
- Find the stationary point on the curve $y = x^2 4x + 3$ and show that it is a 6) minimum turning point.
- Find the stationary point on the curve $y = x^3 1$ and determine its nature. 7)
- Find the stationary points on the curve $y = x^3 + 3x^2 9x + 4$ and determine their 8) nature.
- Find the first and second derivatives of $2x^5 7x^3 + 2x 1$. 9)
- 10)
- Find f¹(x) and f¹¹(x) if $f(x) = 4x^3 9$. Find f¹(2) and f¹¹(2) if $f(x) = 3x^4 x^2 + 2x 3$. 11)
- 12)
- Find all values of x for which the curve $y = x^3 3x^2 + x 4$ is concave downwards. For the curve y = f(x), $f^{-1}(a) = 0$ and $f^{-11}(a) > 0$. Describe the shape of the curve at 13) the point where x = a.
- 14) The number, N, of people with flu is increasing over time t. Also, the rate at which people are catching flu is also increasing.
 - (a) Describe the sign of $\frac{dN}{dt}$ and $\frac{d^2N}{dt^2}$.
 - (b) Sketch a graph that describes the information.
- 15) The population P, of birds in a certain area is increasing over time t, but the rate of population growth is slowing. Describe the sign of $\frac{dP}{dt}$ and $\frac{d^2P}{dt^2}$.
- Find the stationary point on the curve $y = x^3$ and show that it is a point of 16) inflexion.
- Find the point of inflexion on the curve $y = 2x^3 12x^2 + 5$. 17)
- Consider the curve $y = x^3 3x^2 + 1$. 18)
 - (a) Find any stationary points on the curve.
 - (b) Determine their nature.
 - (c) Find any points of inflexion on the curve.
 - (d) Hence sketch the curve in the domain $-2 \le x \le 3$
 - (e) Find the minimum value of the curve in this domain.
- A closed box with a square base is to be made so that its volume is 100 cm³. 19)
 - (a) Show that the surface area of the box is given by $A = 2x^2 + \frac{400}{r}$.
 - (b) Find the minimum possible surface area of the box, to one decimal place.

20)

A rectangle with sides x and y is cut out of a circle with diameter 50 cm.

- (a) Show that the area of the rectangle is given by $A = x\sqrt{2500 x^2}$
- (b) Find the maximum possible area of the rectangle.
- Fixed points M(3,9) and N(-2,4) lie on the parabola $y = x^2$, and P(p,p²) is a variable point on the parabola.

- (a) Find the exact perpendicular distance from P to the line MN.
- (b) If P always lies under the line MN, show that the area of triangle MNP is given

by
$$A = \frac{5(p-p^2+6)}{2}$$
.

- (c) Hence find the maximum area of triangle MNP.
- 22) Find the primitive function of 2x 3.
- 23) Find the primitive function of $5x^4 + 2x^3 x^2 + 1$.
- 24) If $\frac{dy}{dx} = 4x + 1$ and y = 2 when x = 3, find y when x = 5.
- 25) Given $f^{1}(x) = 6x^{2} 1$, and f(0) = 4, find f(1).
- 26) If a curve has $\frac{d^2y}{dx^2} = 12x 12$ and $\frac{dy}{dx} = 2$ and y = 1 when x = 1, find the equation of the curve.
- The tangent to a curve at point N has equation 5x y 1 = 0.
 - (a) If $\frac{dy}{dx} = 4x 3$, find the coordinates of N.
 - (b) Find the equation of the curve.

ANSWERS

1)
$$x > 2$$

$$(2)$$
 $x > 0$

4)
$$\frac{-2}{(x-1)^2} \neq 0$$

5)
$$a = 4, b = -8$$

6) (2,-1); LHS
$$\frac{dy}{dx}$$
 < 0, RHS $\frac{dy}{dx}$ > 0.

7)
$$(0,-1)$$
; point of inflexion

8)
$$(-3,31)$$
 maximum, $(1,-1)$ minimum

8) (-3,31) maximum, (1,-1) minimum
9)
$$y^1 = 10x^4 - 21x^2 + 2$$
; $y^{11} = 40x^3 - 42x$
10) $f^1(x) = 12x^2$; $f^{11}(x) = 24x$
11) $f^1(2) = 94$; $f^{11}(2) = 142$

10)
$$f^{1}(x) = 12x^{2}$$
; $f^{11}(x) = 24x$

11)
$$f^{1}(2) = 94$$
; $f^{11}(2) = 142$

12)
$$x < 1$$

13) There is a minimum turning point where x = a.

14) (a)
$$\frac{dN}{dt} > 0, \frac{d^2N}{dt^2} > 0$$

$$15) \qquad \frac{dP}{dt} > 0, \frac{d^2P}{dt^2} < 0$$

16) (0,0); At (0,0)
$$\frac{d^2y}{dx^2} = 0$$
. On LHS $\frac{d^2y}{dx^2} < 0$, on RHS $\frac{d^2y}{dx^2} > 0$.

$$(c)(1,-1)$$

(d)

(e) -19
19) (a)
$$x^2y = 100$$

So $y = \frac{100}{x^2}$
 $A = 2x^2 + 4xy$
 $= 2x^2 + 4x \frac{100}{x^2}$
 $= 2x^2 + \frac{400}{x}$

(b) 129.3 cm²
20) (a)
$$x^2 + y^2 = 50^2$$

So $y^2 = 2500 - x^2$
 $y = \sqrt{2500 - x^2}$

Now A =
$$xy$$

= $x\sqrt{2500 - x^2}$

(b) 1250 cm²

21) (a)
$$\frac{p-p^2+6}{\sqrt{2}}$$

(b) MN =
$$\sqrt{(3-2)^2 + (9-4)^2} = \sqrt{50}$$

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2}\sqrt{50} \times \frac{p-p^2+6}{\sqrt{2}}$$

$$= \frac{5(p-p^2+6)}{2}$$
(c) 15.625 units²
 $x^2 - 3x + C$

22)
$$x^2 - 3x + C$$

23)
$$x^5 + \frac{x^4}{2} - \frac{x^3}{3} + x + C$$

24)
$$y = 36$$

25)
$$f(1) = 5$$

26)
$$y = 2x^3 - 6x^2 + 8x - 3$$

27) (a)
$$N = (2,9)$$
 (b) $2x^2 - 3x + 7$