GRAPHS 4 COMPLEX NOS - PRACTICE PAPER

Question 1 (24 marks)

(a) The graph of y = f(x) is shown at right.

(14 marks)

Sketch graphs of the following, clearly showing any axes intercepts and turning points.

(i) y = f(x+3)

- (iii) $y = \frac{1}{f(x)}$
- $(iv) y^2 = -f(x)$
- $(v) y = \ln(f(x))$
- (vi) $y = e^{f(x)}$
- $(vii) y = \tan^{-1}(f(x))$

- (b) Given the graph of y = f'(x) as above, sketch the graph of y = f(x) given that f(0) = 0 and f(x) is continuous. (2 marks)
- (c) The polynomial P(z) has the equation $P(z) = z^4 2z^3 + Az^2 + Bz + 10$, where A, B are real. Given that 2 + i is a zero of P(z), find all the roots of P(z) and write P(z) as a product of two real quadratic factors. (2 marks)
- (d) $z_1 = 4 + 3i, |z_2| = 2$ (6 marks)
 - (i) sketch and describe the locus of $z_1 + z_2$.
 - (ii) find the ranges of $|z_1 + z_2|$ and $|z_1 z_2|$. Label A and D the points with maximum $|z_1 + z_2|$ and $|z_1 z_2|$ and B and C the points with minimum $|z_1 + z_2|$ and $|z_1 z_2|$ respectively.
 - (iii) find the range of $\arg \frac{z_1}{z_1 z_2}$. Write your answers to the nearest degree.

Question 2 (16 marks)

(a) Sketch the following loci:

(6 marks)

- (i) |z-i|=|z|.
- (ii) $\arg(z \sqrt{3} + i) = \frac{\pi}{3}$.
- (iii) $|z+3-4i| \le 5$ and $0 \le \text{Re}(z) \le 1$.
- (iv) $\arg\left(\frac{z-\sqrt{3}+i}{z+\sqrt{3}+i}\right) = \frac{\pi}{3}$, stating its centre and radius.
- (b) (i) Express z = 1 + i in modulus-argument form.

(3 marks)

- (ii) Hence write z^9 in the form a + ib where a and b are real.
- (c) In an Argand diagram, point A corresponds to the complex number 1+bi, b is real. (5 marks)
 - (i) If O is the origin, what complex numbers correspond to the vertices B and C if OABC is a square, assuming O, A, B, C are in anticlockwise order?
 - (ii) Describe the locus of B if b varies.
- (d) The points A, P and R correspond to the complex numbers 2, 3+i and 3+2i respectively. Triangles OAP and ORQ are similar with corresponding angles as indicated. Find the complex number represented by Q. (2 marks)

(a) The graph of y = f(x) is shown at right.

Sketch graphs of the following, clearly showing any axes intercepts and turning points.

(i)
$$y = f(x+3)$$
 (ii) $y = f(|x|)$

(ii)
$$y = f(|x|)$$

(i)

(iii)
$$y = \frac{1}{f(x)}$$
 (iv) $y^2 = -f(x)$
(v) $y = \ln(f(x))$ (vi) $y = e^{f(x)}$

$$(iv) y^2 = -f(x)$$

$$(v) y = \ln(f(x))$$

(vi)
$$v = e^{f(x)}$$

$$(vii) y = \tan^{-1}(f(x))$$

(ii)

(iii)

14m

(v)

(vi)

continuous.

2m

2-i is also a root because all coefficients are real. $\therefore (z-2+i)(z-2+i) = z^2-4z+5$ is a factor.

$$z^4 - 2z^3 + Az^2 + Bz + 10 = (z^2 - 4z + 5)(z^2 + 2z + 2).$$

Other roots are $z = \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$.

(i) the locus of $z_1 + z_2$.

As z_1 is a fixed point and the distance from z_1 to $(z_1 + z_2)$ is a constant, so the locus is a circle of centre z_1 , radius 2.

(ii) the ranges of $|z_1 + z_2|$ and $|z_1 - z_2|$.

 $z_1 + z_2$ is the distance from the origin to $z_1 + z_2$ so, it's max at A (= 5 + 2 = 7) and min at B(= 5 - 2 = 3). \therefore 3 \leq $|z_1 + z_2| \leq$ 7. 3m $z_1 - z_2$ is the distance from z_1 to z_2 so, it's max at D and min at $C :: 3 \le |z_1 - z_2| \le 7$.

(iii) the range of
$$\arg \frac{z_1}{z_1 - z_2}$$
.

$$\arg \frac{z_1-0}{z_1-z_2}=\alpha=$$
 angle Oz_1z_2 , so it's max when z_1z_2 is tangent to the circle $\left|z_2\right|=2...\sin \alpha=\frac{2}{5}...\alpha=24^\circ$.

$$\therefore -24^{\circ} \le \arg \frac{z_1 - 0}{z_1 - z_2} \le 24^{\circ}.$$

Question 2

$$(i) |z-i| = |z|.$$

(ii)
$$\arg(z - \sqrt{3} + i) = \frac{\pi}{3}$$
.

(iii)
$$|z+3-4i| \le 5$$
 and $0 \le \text{Re}(z) \le 1$.

(iv)
$$\arg\left(\frac{z-\sqrt{3}+i}{z+\sqrt{3}+i}\right) = \frac{\pi}{3}$$
.

- (b) (i) Express z = 1 + i in modulus-argument form. $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$
 - (ii) Hence write z^9 in the form a + ib where a and b are real.

$$\left(\sqrt{2}\operatorname{cis}\frac{\pi}{4}\right)^9 = 16\sqrt{2}\operatorname{cis}\frac{9\pi}{4} = 16\sqrt{2}\operatorname{cis}\frac{\pi}{4} = 16\sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = 16 + 16i.$$

- (c) In an Argand diagram, point A corresponds to the complex number 1+bi, where b is real.
 - (i) If O is the origin, what complex numbers correspond to the vertices B and C if OABC is a square, assuming O, A, B, C are in anticlockwise order?

$$\overrightarrow{OC} = \overrightarrow{OA} \text{ rot. } 90^{\circ}, \therefore C = iA = i(1+bi) = -b+i$$

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC} \cdot B = 1+bi+(-b+i) = (1-b)+i(1-b)$$

3m

1m

2m

1m

2m

,
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC}$$
, $\therefore B = 1 + bi + (-b + i) = (1 - b) + i(1 + b)$

- (ii) Describe the locus of B if b varies. Let x = 1 b, y = 1 + b, x + y = 2. The locus of B is the line x + y = 2. 2m
- (d) The points A, P and R correspond to the complex numbers 2, 3+i and 3+2i respectively. Triangles *OAP* and *ORQ* are similar with corresponding angles as indicated. Find the complex number represented by Q.

$$\frac{OR}{OA} = \frac{OQ}{OP}$$
, $\therefore OQ = \frac{OR.OP}{OA} = \frac{|r||p|}{2}$.

$$\angle QOR = \angle POA$$
, arg $(q) - arg(r) = arg(p)$, arg $(q) = arg(p) + arg(r) = arg(p) + arg(r) - arg(2) = arg(\frac{pr}{2})$.

$$\therefore q = \frac{pr}{2} = \frac{(3+i)(3+2i)}{2} = \frac{7+9i}{2}.$$