

Student Name	•
1	
Teacher:	

2012 TRIAL HSC EXAMINATION

Hurlstone Agricultural High School

Mathematics Extension 1

Examiners

Mr J. Dillon, Mrs S. Hackett, Mr G. Rawson and Mrs D. Crancher

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black or blue pen.
 Diagrams may be drawn in pencil.
- Board-approved calculators and mathematics templates may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-14.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14. Each of these four questions are worth 15 marks
- Allow about 1 hour 45 minutes for this section

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = -\frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1. What is another expression for cos(x+y)?
 - (A) $\cos x \cos y - \sin x \sin y$
- $\sin x \cos y + \cos x \sin y$
- (C) $\cos x \cos y + \sin x \sin y$
- $\sin x \cos y \cos x \sin y$
- 2. Which of the following is an expression for $\int \cos^2 2x dx$?
 - (A) $x \frac{1}{4}\sin 4x + c$ (B) $x + \frac{1}{4}\sin 4x + c$
- - (C) $\frac{x}{2} \frac{1}{8}\sin 4x + c$ (D) $\frac{x}{2} + \frac{1}{8}\sin 4x + c$
- 3. What is the domain of the function $f(x) = 2 \sin^{-1} \left(\frac{x}{2}\right)$?
 - $-\pi \le x \le \pi$

 $-2\pi \le x \le 2\pi$

 $-1 \le x \le 1$

- $-2 \le x \le 2$
- 4. Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9-x^2}} dx$?
- (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{4}$
- (D) π

- 5. Given $f(x) = \frac{3}{x} 4$, $f^{-1}(4) = ?$
 - (A) $-\frac{13}{4}$ (B) $\frac{13}{4}$ (C) $\frac{3}{8}$ (D) $-\frac{3}{8}$

6 Mathematical induction is used to prove

$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{1}{3}n(2n+1)(2n-1)$$
 for all positive integers $n \ge 1$.

Which of the following has an incorrect expression for part of the induction proof?

- Step 1: To prove the statement true for n=1LHS = $1^2 = 1$ RHS = $\frac{1}{2} \times 1 \times (2 \times 1 + 1)(2 \times 1 - 1) = 1$ Result is true for n=1
- Step 2: Assume the result true for n = k $1^{2} + 3^{2} + 5^{2} + ... + (2k-1)^{2} = \frac{1}{2}(k+1)(2k+1)(2k-1)$
- To prove the result is true for n = k + 1 $1^2 + 3^2 + 5^2 + ... + (2k-1)^2 + (2(k+1)-1)^2$ $=\frac{1}{2}(k+1)(2(k+1)+1)(2(k+1)-1)$ $=\frac{1}{2}(k+1)(2k+3)(2k+1)$
- (D) LHS = $1^2 + 3^2 + 5^2 + ... + (2k-1)^2 + (2(k+1)-1)^2$ $= \frac{1}{3}k(2k+1)(2k-1) + (2k+1)^2$ $=\frac{1}{2}(2k+1)(k(2k-1)+3(2k+1))$ $= \frac{1}{3}(2k+1)(2k^2-k+6k+3)$ $=\frac{1}{2}(2k+1)(2k^2+5k+3)$ $=\frac{1}{3}(2k+1)(k+1)(2k+3)$ = RHS

7 Line TA is a tangent to the circle at A and TB is a secant meeting the circle at B and C.

Given that TA=6, CB=9 and TC=x, what is the value of x?

(A) -12

(C) 3

(D) 4

8 At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged if the host and hostess are separated?

(A)

1440

3600

(D) 5040

9 A curve has parametric equations $x = \frac{2}{x}$ and $y = 2t^2$.

What is the Cartesian equation of this curve?

(B) $y = \frac{8}{x}$ (C) $y = \frac{4}{x^2}$

10 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?

t = 4.5 and t = 11.5

t = 0

t = 2, t = 8 and t = 14

t = 8

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet	Marks
(a) Solve $\frac{3}{x+2} < 1$	2
(b) At any point on the curve $y = f(x)$, the gradient function is given by $\frac{dy}{dx} = \sin^2 x$. Show that the value of $f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right)$ is equal to $\frac{\pi}{4} + \frac{1}{2}$.	3
(c) Find the general solutions of $2\sin^3 x - \sin x - 2\sin^2 x + 1 = 0$	3
(d) Show that $\frac{1+\cos x}{\sin x} = \frac{1}{t}$ for $t = \tan \frac{x}{2}$.	2
(e) Show that $\sin A \cos B = \frac{1}{2} [\sin (A+B) + \sin (A-B)]$	2
(f) A vertical tower of height h metres stands on horizontal ground.	
From a point P on the ground due east of the tower the angle of elevation of the top of the tower is 45 degrees.	
From a point Q on the ground due south of the tower the angle of elevation of the top of the tower is 30 degrees.	
(i) Draw a neat diagram in your answer booklet to represent this situation.	1
(ii) If the distance PQ is 40 metres, find the exact height of the tower.	2

Question 12 (15 marks) Start a new answer booklet

Marks

(a) What is the inverse function of
$$y = \frac{1}{4-x}$$
?

1

(b) Show that
$$\frac{d}{dx} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right) = \cos^{-1} x$$

2

(c)

The shaded area is represented by $\int_0^2 \sin^{-1} \frac{x}{2} dx$.

Explain why the area is given by $\pi - 2 \int_{0}^{\frac{\pi}{2}} \sin y \, dy$.

2

Question 12 continued next page.

(d) Let $f(x) = 1 + 2\cos\frac{x}{2}$. The diagram shows the graph y = f(x).

Question 12 continued this page.

- (i) State the period and the amplitude of the curve given that x is expressed in radians.
- (ii) The point P(x,y) is a turning point on the curve. Find its coordinates.
- (iii) What is the largest possible positive domain, containing x = 0, for which y = f(x) has an inverse function?
- (iv) Find the equation of $f^{-1}(x)$ for this restricted domain of f(x).
- (v) Sketch the curve $y = f^{-1}(x)$.
- (vi) $A(\alpha, 0)$ lies to the right of P as indicated in the diagram above. Find a simplified expression for the exact value of $y = f^{-1}(f(\alpha))$.

2

1

1

2

Question 13 (15 marks) Start a new answer booklet

Marks

(a) (i)

NOT TO SCALE

O is the centre of the circle ABP. $MO \perp AB = M$, P and B are collinear. MO intersects AP at L.

(α) Prove that A, O, P and M are concyclic.

2

2

(β) Prove that $\angle OPA = \angle OMB$.

(b) 110vc that 2.01 h = 20mb.

(ii) Use Mathematical Induction to prove that

$$4 \times 2^{n} + 3^{3n}$$

is divisible by 5 for all integers $n, n \ge 0$.

3

1

2

1

8

- (b) (i) The mass M of a male silverback gorilla is modelled by $M = 200 198e^{-kt}$, where M is measured in kilograms, t is the age of the gorilla in years and k is a positive constant.
 - (a) Show that the rate of growth of the mass of the gorilla is given by the differential equation $\frac{dM}{dt} = k(200 M)$
 - (β) When the gorilla is 6 years old its mass is 68 kilograms. Find the value of k, correct to three decimal places.
 - (γ) According to this model, what is the limiting mass of the gorilla?
 - (ii) (a) Show that $\frac{u^3}{u+1} = u^2 u + 1 \frac{1}{u+1}$
 - (β) Hence, by using the substitution $u = \sqrt{x}$, show that $\int_{0}^{4} \frac{x}{1+\sqrt{x}} dx = \frac{16}{3} \ln 9$

Ques	tion 14	(15 marks) Start a new answer booklet	Marks
(a)		many distinct eight letter arrangements can be made using the letters word PARALLEL?	2
(b)	Alex's	s playlist consists of 40 different songs that can be arranged in any order.	
()	(i)	How many arrangements are there for the 40 songs?	1
	(ii)	Alex decides that she wants to play her three favourite	1
	()	songs first, in any order.	
		How many arrangements of the 40 songs are now possible?	1
(c)		particles moving in a straight line are initially at the origin. The velocity	
	of one	particle is $\frac{2}{\pi}$ m/s and the velocity of the other particle at time t seconds	
	is giv	en by $v = -2\cos t$ m/s.	
	(i)	Determine equations that give the displacements, x_1 and x_2 metres, of the particles from the origin at time t seconds.	2
	(ii)	Hence, or otherwise, show that the particles will never meet again.	2
(d)	P(2p,	p^2) and $Q(2q,q^2)$ are two points on the parabola $x^2 = 4y$.	
	(i)	Show that the equation of the tangent to $x^2 = 4y$ at P is $y = px - p^2$.	2
	(ii)	Show that the coordinates of T , the point of intersection of the tangents from P and Q is given by $(p+q, pq)$.	1
	(iii)	Given that $\frac{1}{p} + \frac{1}{q} = 2$, find the equation of the locus of T .	1
(e)	A resti	ing adult's breathing cycle is 5 seconds long.	
	For tin	the t seconds, $0 \le t \le 2\frac{1}{2}$, air is taken into the lungs.	
	For 2	$\frac{1}{2} < t < 5$ air is expelled from the lungs.	
	The ra	te, R litres/second, at which air is taken in or expelled from the lungs	
	can be	modelled on the equation $R = \frac{1}{2} \sin\left(\frac{2\pi}{5}t\right)$.	
	How n	nany litres of air does a resting adult take into their lungs during one	

breathing cycle?

3

Left blank intentionally

Guidelines Solutions and Marking		
PE4 parabo HE3 probal HE7	Outcome Addressed in this Question determines derivatives which require the application of more than o uses the relationship between functions, inverse functions and their uses inductive reasoning in the construction of proofs uses multi-step deductive reasoning in a variety of contexts solves problems involving permutations and combinations, inequali- etry and parametric representations uses the parametric representation together with differentiation to id- olas uses a variety of strategies to investigate mathematical models of sit oility, projectiles, simple harmonic motion, or exponential growth and evaluates mathematical solutions to problems and communicates the Solutions	derivatives ties, polynomials, circle lentify geometric properties of mations involving binomial I decay
Outcome	Question 1.	Warking Guidennes
HE7	$\cos(x+y) = \cos x \cos y - \sin x \sin y$ Answer is A	1 mark for correct answer
PE5	Question 2. $\int \cos^2 2x dx = \int \left(\frac{1}{2} + \frac{1}{2}\cos 4x\right) dx$	
Ž.		
	Answer is D	1 mark for correct answer
	Question 3.	
HE4	Now, $-1 \le \frac{x}{2} \le 1$ $-2 \le x \le 2$ Therefore domain is $-2 \le x \le 2$.	
	Answer is D	1 mark for correct answer

Extension 1 Mathematics

Solutions and Marking

Year 12

Questions 1 to 10 Multiple Choice

Question 4.

HE4

Task 4-Trial HSC 2012

$$\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4}{\sqrt{9 - x^2}} dx$$

$$= \left[4\sin^{-1} \left(\frac{x}{3} \right) \right]_{\frac{3}{\sqrt{2}}}^{3}$$

$$= 4\sin^{-1} 1 - 4\sin^{-1} \frac{1}{\sqrt{2}}$$

$$= 4\left(\frac{\pi}{2} \right) - 4\left(\frac{\pi}{4} \right)$$

$$= 2\pi - \pi$$

$$= \pi$$

Answer is D

Question 5.

Function is:

$$f(x) = \frac{3}{x} - 4$$

HE4

Inverse function is:

$$x = \frac{3}{y} - 4$$

$$x + 4 = \frac{3}{y}$$

$$y = \frac{3}{x+4}$$
i.e. $f^{-1}(x) = \frac{3}{x+4}$

Therefore,

$$f^{-1}(4) = \frac{3}{4+4} = \frac{3}{8}$$

Answer is C

Question 6.

The incorrect expression for part of the induction proof is:

HE2

(B) Step 2: Assume the result true for
$$n = k$$

$$1^2 + 3^2 + 5^2 + ... + (2k-1)^2 = \frac{1}{3}(k+1)(2k+1)(2k-1)$$

Answer is B

1 mark for correct answer

1 mark for correct answer

1 mark for correct answer

	Question 7.	
PE2 PE3	$6^2 = x(x+9)$ [The square of the intercept on tangent to a circle equals the product of the intercepts on the secant]	
	$36 = x^2 + 9x$	
	$x^2 + 9x - 36 = 0$	
	(x+12)(x-3)=0	
	x = -12, 3	
	The value of x is 3.	
	Answer is C	1 mark for correct answer
PE3	Question 8. 5×6!=3600	
	Answer is C	1 mark for correct answer
	Question 9.	
PE4	Now,	
1	$x = \frac{2}{t} \dots A$	
	Rearrange A	
	$t=\frac{2}{x}$	
	$y = 2t^2 \dots B$	
	substitute $t = \frac{2}{x}$ into B	-
	$\therefore y = 2\left(\frac{2}{x}\right)^2$	
	$\therefore y = \frac{8}{x^2}$	
	Answer is D	1 mark for correct answer
designation of the second	Question 10.	
*****	The particle is at rest when $\frac{dy}{dx} = 0$ which occurs at the maximum	
HE3	and minimum turning points. <i>i.e.</i> $t = 4.5$ and $t = 11.5$	
	Answer is A	1 mark for correct answer
L		

Year		Task 4-Trial HSC 2012	
Quest	ions 11 Solutions and Marking Guidelines Outcome Addressed in this Question		
PE3	solves problems involving permutations and combinations, inequali	ties nolymomials circle	
1113	geometry and parametric representations		
HE7	evaluates mathematical solutions to problems and communicates them in an appropriate form		
PE6	makes comprehensive use of mathematical language, diagrams and		
	wide variety of situations	5	
H4	expresses practical problems in mathematical terms based on simple	e given models	
Outcome	Solutions	Marking Guidelines	
	Question 11.		
	(a)	2 Marks for complete correct	
PE3		solution.	
	$\frac{3}{x+2}$ < 1 $x \neq -2$		
	3	124-1-6-6-8-1	
	$(x+2)^2 \times \frac{3}{(x+2)} < 1 \times (x+2)^2$	1 Mark for finding one correct solution or	
		multiplying both sides of the	
	$3(x+2) < 1(x+2)^2$	inequality by $(x+2)^2$.	
	(x+2)(3-x-2)<0	medianty by $(x+2)$:	
	(x+2)(1-x)<0		
	ν 4 [‡]		
	2		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	-2†		
	-4-	-	
	-61		
	x < -2 or x > 1		
	X < -2 01 X > 1		
	(b)		
	` ^	3 Marks for complete correct	
HE7	$\frac{dy}{dx} = \sin^2 x$	solution	
	dv = 1		
	$\frac{dy}{dx} = \frac{1}{2} - \frac{1}{2} \cos 2x$	2 Marks for finding correct	
		equation for y and correctly	
	$y = \frac{1}{2}x - \frac{1}{2} \times \frac{\sin 2x}{2} + C$	substituting into y for both values	
	2	Values	
	$y = \frac{x}{2} - \frac{1}{4}\sin 2x + C$	1 Mark for finding correct	
	. 2 4	equation for y	
	$f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right) = \left(\frac{3\pi}{8} - \frac{1}{4}\sin\frac{3\pi}{2} + C\right) - \left(\frac{\pi}{8} - \frac{1}{4}\sin\frac{\pi}{2} + C\right)$		
	$=\left(\frac{3\pi}{8}+\frac{1}{4}\right)-\left(\frac{\pi}{8}-\frac{1}{4}\right)$		
	$-\left(\frac{8}{8},\frac{4}{4}\right)-\left(\frac{8}{8},\frac{4}{4}\right)$		
	π 1		
	$=\frac{\pi}{4}+\frac{1}{2}$		

i	(c)	
HE7	$2\sin^3 x - \sin x - 2\sin^2 x + 1 = 0$	
	$2\sin^2 x(\sin x - 1) - (\sin x - 1) = 0$	
İ	$(\sin x - 1)(2\sin^2 x - 1) = 0$	
		3 marks for correct solution
	$\therefore \sin x = 1, \sin x = \frac{1}{\sqrt{2}}, \sin x = -\frac{1}{\sqrt{2}}$	
	,- ,-	2 moult for factorising the
	$\therefore x = n\pi + (-1)^n \frac{\pi}{2}, x = n\pi + (-1)^n \frac{\pi}{4}, x = n\pi - (-1)^n \frac{\pi}{4}$	2 mark for factorising the equation and then solving the
	where n is any integer.	resulting equation correctly
HE7	(d)	1 mark for factorising correctly
IIE/	$\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$ for $t = \tan \frac{x}{2}$	correctly
	$1+t^2 \qquad 1+t^2 \qquad 2$	
	Now,	
1	$LHS = \frac{1 + \cos x}{\sin x}$	
	$1-t^2$	
	$=\frac{1+\frac{1-t^2}{1+t^2}}{\frac{2t}{1+t^2}}$	
	$=\frac{2t}{2t}$	2 marks for complete correct solution
		Solution
	$=\frac{1+t^2+1-t^2}{2t}$	1 mark for correctly
		substituting the t results
	$=\frac{2}{2t}$	
i	$=\frac{1}{2}$	
	t = RHS	
	= Kn3	
	1,, 1	
	$\therefore \frac{1+\cos x}{\sin x} = \frac{1}{t} \text{for} t = \tan \frac{x}{2}.$	
	$\sin x = t$	
	(e)	
HE7	$RHS = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$	
	$\frac{A(B-2)\sin(A+B)+\sin(A-B)}{2}$	
	$= \frac{1}{2} \left(\sin A \cos B + \cos A \sin B + \sin A \cos B - \cos A \sin B \right)$	
	2	
	$=\frac{1}{2}(2\sin A\cos B)$	
	$= \sin A \cos B$	
	$= \sin A \cos B$ $= LHS$	
	= LN3	2 marks for complete correct
	1	solution
	$\therefore \sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$	1 16
	2	1 mark for correct expansions
		capansions

İ	Year 12 Trial HSC 2012 – Extension	
	ion No: 12 Solutions and Marking Guidelin	ies
	nes Addressed in this Question: ses the relationship between functions, inverse functions and their	derivatives.
Outcome		Marking Guidelines
	a)	1 mark – correct answer
HE4	Inverse: $x = \frac{1}{4 - y}$ $4 - y = \frac{1}{x}$	
	$y = 4 - \frac{1}{x}$ b)	
HE4	$\frac{d}{dx}\left(x\cos^{-1}x - \sqrt{1 - x^2}\right) = \cos^{-1}x \cdot 1 + x \cdot \frac{1}{\sqrt{1 - x^2}} \cdot \frac{1}{2}(1 - x^2)^{\frac{1}{2}} \cdot 2x$ $= \cos^{-1}x + \frac{x}{\sqrt{1 - x^2}} - \frac{x}{\sqrt{1 - x^2}}$ $= \cos^{-1}x$	2 marks – correct solution clearly showing all steps 1 mark – substantial progress towards correct solution
HE4	Shaded areaArea of rectangle - area between curve and y axis bounded	by y=0 and y= $\frac{\pi}{2}$ $\frac{2 \text{ marks}}{1 + 1 + 1}$ - correct
	Shaded area $=2 \times \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} x dy$ Given $y = \sin^{-1} \frac{x}{2}$, $x = 2 \sin y$	explanation, clearly showing all steps 1 mark - substantial progress towards correct
	Shaded area $=\pi - \int_{0}^{\frac{\pi}{2}} 2\sin y dy$	explanation
	Shaded area $=\pi-2\int_{0}^{\pi}\sin y dy$ d) i)	2 marks – two correct
HE4	$period = \frac{2\pi}{V_2} = 4\pi$	answer 1 mark – one correct answer
	amplitude = 2	
HE4	d) ii) <i>P</i> (2π,-1)	1 mark - correct answer
HE4	d) iii) $0 \le x \le 2\pi$	1 mark – correct answer
HE4	d) iv) $y = 1 + 2\cos\frac{x}{2}$	2 marks – correct solution
1	Inverse: $x = 1 + 2\cos\frac{y}{2}$	1 mark – substantial progress towards correct
	$\frac{x-1}{2} = \cos\frac{y}{2}$ $y = 2\cos^{-1}\left(\frac{x-1}{2}\right)$	solution
	$f^{-1}(x) = 2\cos^{-1}\left(\frac{x-1}{2}\right)$	

Quest		Trial HSC 2012
	9	
PE3 HE2	Outcomes Addressed in this Question solves problems involving circle geometry uses inductive reasoning in the construction of proofs	
HE3 HE6	uses a variety of strategies to investigate mathematical models of situations involving exponent determines integrals by reduction to a standard form through a given substitution	
	Solutions	Marking Guidelines
PE3	(a)(i)(α) $\angle APB = 90^{\circ} \text{ (angle at the circumference in a semi-circle equals } 90^{\circ} \text{)}$	Award 2
	∴ $\angle APM + 90^{\circ} = 180^{\circ}$ (angle sum of straight angle MPB equals 180°)	Correct solution.
	$\therefore \angle APM = 90^{\circ}$	Award 1
	$\angle AOM = 90^{\circ} (given)$	Correct solution with
	$\therefore \angle APM = \angle AOM = 90^{\circ}$	insufficient reasoning provided
	\therefore AOPM is cyclic (AM subtends equal angles on the same side at O and P)	provided
	:. A,O,P and M are concyclic.	
PE3	(a)(i) (β) $AO = OP \text{ (radii)}$	Award 2 Correct solution.
	$\therefore \angle PAO = \angle OPA \text{ (equal angles are opposite equal sides in } \triangle OPA \text{)}$	Award 1
	But, $\angle OAP = \angle OMP$ (angles at the circumference in the same segment are equal)	Correct solution with
	$\therefore \angle OPA = \angle OMB = \angle OMP$	insufficient reasoning provided
HE2	(a) (ii) Show true for $n = 0$,	
	$4 \times 2^0 + 3^{3.0} = 4 + 1 = 5$ which is divisible by 5.	Award 3
	$4 \times 2 + 3 = 4 + 1 = 3 \text{ which is divisione by 5.}$ ∴ True for $n = 0$	Correct solution.
		Award 2
	Show true for $n = 1$,	Attempts to prove true for
	$4 \times 2^1 + 3^{3.1} = 8 + 27 = 35$ which is divisible by 5.	n = k + 1, after proving true
	\therefore True for $n=1$	for $n = 0$ and using assumption.
	Assume true for $n = k$, i.e. $4 \times 2^k + 3^{3k} = 5M$, M is an integer.	Award 1 Proves true for $n = 0$.
	Prove true for $n = k + 1$, i.e. Show $4 \times 2^{k+1} + 3^{3(k+1)} = 5J$, J is an integer. $4 \times 2^{k+1} + 3^{3(k+1)} = 4 \times 2 \times 2^k + 3^{3(k+1)}$	
	$= 2 \times (5M - 3^{3k}) + 3^{3k} \times 3^3$	
	$= 2 \times 5M - 2 \times 3^{3k} + 27 \times 3^{3k}$	
	$=2\times 5M+25\times 3^{3k}$	
	$=5\left(2M+5\times3^{3k}\right)$	
	= 5J, J is an integer	
	True for $n = k + 1$.	
	∴ True by mathematical induction for $n \ge 0$	

HE3	(1-)(1)(-1)		1
TIE	(b)(i)(α) $M = 200 - 198e^{-kt}$	RHS= $k(200 - M) = k(200 - (200 - 198e^{-k}))$	
	· ·	MID *(200 - 12) = *(200 - (200 - 150e))	Award 1 for correct
	$LHS = \frac{dM}{dt} = -198 ke^{-kt}$	$= k.198e^{-kt}$	solution.
	$= k.198e^{-kt}$	= LHS	
	$M = 200 - 198e^{-kt}$ is a so	lution to $\frac{dM}{dt} = k(200 - M)$	
HE3	(b)(i)(β)		
	t = 6, M = 68		
	$68 = 200 - 198e^{-6k}$		Award 2 for correct
	$198e^{-6k} = 132$		solution.
	$e^{-6k} = \frac{132}{108} = \frac{2}{3}$		Award 1 for substantial
	170 5		progress towards solution.
	$-6k = \ln\left(\frac{2}{3}\right)$		
	$k = \frac{1}{6} \ln \left(\frac{3}{2} \right) \approx 0.0675775$	1802	
	$\therefore k = 0.068$ (to 3 decimal	places)	
HE3	(b)(i)(γ)		Award 1 for correct
	As $t \to \infty$, $M \to 200$ \therefore Limiting mass = 200 kg	•	solution.
	(b)(ii)(α)	5	
	$LHS = \frac{u^3}{u+1}$		Award 1 for correct
	$\frac{1}{u+1}$		solution.
	RHS = $u^2 - u + 1 - \frac{1}{u + 1}$		
)+1(u+1)-1	
	$=\frac{u^2(u+1)-u(u+1)}{u+1}$	y(
	$=\frac{u^3+u^2-u^2-u+t}{u+1}$	u+1-1	
	$=\frac{u^3}{u+1}$		ì
	<i>u</i> + 1 = LHS		
HE6	(b)(ii)(β)		
11120	(* * - F F -	a. I.	
	$\int_{0}^{4} \frac{x}{1+\sqrt{x}} dx u = \sqrt{x} \Rightarrow dx = 2\sqrt{x} dx$	i = 2u du	Award 3
	$=\int_0^2 \frac{u^2}{1+u} \cdot 2u du$		Correct solution.
			Award 2
	$=2\int_{0}^{2}\frac{u^{3}}{u+1}du$		Substantial progress towards solution
	$=2\int\limits_{-\infty}^{\infty}\left(u^2-u+1-\frac{1}{u+1}\right)du$	· ·	Award 1
			Limited progress towards
	$= 2 \left[\frac{u^{1}}{3} - \frac{u^{2}}{2} + u - \ln(u+1) \right]_{0}^{1}$.1	solution
	$=2\left[\frac{8}{3}-\frac{4}{2}+2-\ln{\left(3\right)}-\left(0-0+0-\ln{\left(3\right)}\right)\right]$	())]	
	$=2\left[\frac{8}{3}-\ln\left(3\right)\right]$		
	$=\frac{16}{3}-2\ln(3)$		
	$=\frac{16}{3}-\ln(9)$		
) `´		

Year 12	Mathematics Extension 1	TRIAL EXAM 2012
Question No. 14	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

- PE3 solves problems involving permutations and combinations, inequalities, polynomials, circle geometry and parametric representations H4 expresses practical problems in mathematical terms based on simple given models
- H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
- H9 communicates using mathematical language, notation, diagrams and graphs

	HE7 - evaluates mathematical solutions to problems and communicates them in an appropriate form		
Outcome	Solutions	Marking Guidelines	
PE3	(a) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360$ ways	2 marks : correct answer 1 mark : partially correct solution (1 for 8! or 1 for division)	
PE3	(b) (i) $40!$ (= $8 \cdot 159 \times 10^{47}$) (ii) $3! \times 37!$ (= $8 \cdot 258 \times 10^{43}$)	1 mark: correct solution 1 mark: correct solution	
H4, H5, H9	(c) (i) $v_1 = \frac{2}{\pi}$ $v_2 = -2\cos t$ $x_2 = -2\sin t + C_2$ $x_1 = \frac{2t}{\pi} + C_1$ when $t = 0, x = 0$ $\Rightarrow C_2 = 0$ $\Rightarrow C_1 = 0$ $\therefore x_1 = \frac{2t}{\pi}$ (ii) $x_1 = \frac{2t}{\pi}$ $x_2 = -2\sin t$	2 marks: correct solution 1 mark: substantially correct solution 2 marks: correct solution 1 mark: substantially correct solution	
РЕЗ	The graphs don't interesect again. $x = \frac{2t}{\pi}$ has a value greater than 2 for $x > \pi$, and the maximum value of $x = -2 \sin t$ is 2. (d) (i) To find the gradient of the tangent $y = \frac{1}{4}x^2$ $\frac{dy}{dx} = \frac{1}{2}x$ At $P(2p, p^2)$ $\frac{dy}{dx} = \frac{1}{2} \times 2p = p$ Equation of the tangent at $P(2p, p^2)$ $y - y_1 = m(x - x_1)$ $y - p^2 = p(x - 2p)$ $px - y - p^2 = 0$ (1)	2 marks: correct solution 1 mark: substantially correct solution	

(ii) Similarly at $Q(2q, q^2)$ the equation of the tangent is $qx-y-q^2=0$ (2)

Eqn (1) – (2)

$$px-qx-p^2+q^2=0$$

 $(p-q)x=p^2-q^2$
 $=(p-q)(p+q)$
 $x=(p+q)$

1 mark: correct solution

Substitute (p+q) for x into Eqn(1)

$$p(p+q)-y-p^{2} = 0$$
$$y = p^{2} + pq - p^{2}$$
$$= pq$$

The coordinates of T is (p+q,pq)

(iii) To find the equation of the locus eliminate p and q. Now x = p + q and y = pq (Coordinates of T)

1 mark: correct solution

PE3

PE3

Given
$$\frac{1}{p} + \frac{1}{q} = 2$$
 or $\frac{p+q}{pq} = 2$

Therefore $\frac{x}{y} = 2$ $y = \frac{x}{2}$

3 marks : correct solution

2 marks : substantially correct solution

1 mark: partially correct solution

HE7

(e)
$$\frac{dV}{dt} = \frac{1}{2}\sin\left(\frac{2\pi}{5}t\right)$$

$$V = \int_{0}^{\frac{3}{2}} \frac{1}{2}\sin\left(\frac{2\pi}{5}t\right)dt$$

$$= -\frac{1}{2} \cdot \frac{5}{2\pi} \left[\cos\left(\frac{2\pi}{5}t\right)\right]_{0}^{\frac{3}{2}}$$

$$= -\frac{5}{4\pi} \left[\cos\pi - \cos 0\right]$$

$$= -\frac{5}{4\pi} \cdot \left[-2\right]$$

$$= \frac{5}{2\pi} \text{ litres.}$$