

Student Name	!	 	
Teacher:			

2012 TRIAL HSC EXAMINATION

Hurlstone Agricultural High School

Mathematics Extension 2

Examiners

Mr J. Dillon and Mr S. Gee

General Instructions

- · Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen.
 Diagrams may be drawn in pencil.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16. Each of these six questions are worth 15 marks
- Allow about 2 hour 45 minutes for this section

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 Consider the hyperbola with the equation $\frac{x^2}{144} - \frac{y^2}{25} = 1$.

What are the equations of the directrices?

(A)
$$y = \pm \frac{25}{13}$$

(B)
$$y = \pm \frac{144}{13}$$

(C)
$$x = \pm \frac{25}{13}$$

$$x = \pm \frac{25}{13}$$
 (D) $x = \pm \frac{144}{13}$

2 The points $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the chord PQ subtends a right angle at (0,0). Which of the following is the correct expression?

(A)
$$\tan \theta \tan \phi = -\frac{b^2}{a^2}$$

$$\tan \theta \tan \phi = -\frac{b^2}{a^2}$$
 (B) $\tan \theta \tan \phi = -\frac{a^2}{b^2}$

(C)
$$\tan \theta \tan \phi = \frac{b^2}{a^2}$$

(D)
$$\tan \theta \tan \phi = \frac{a^2}{h^2}$$

3 What is $-\sqrt{3} + i$ expressed in modulus-argument form?

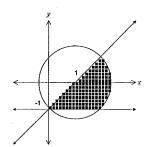
(A)
$$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \qquad (B) \qquad 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(C)
$$\sqrt{2}\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
 (D) $2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

(D)
$$2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

4 Consider the Argand diagram below.



(A)
$$|z-1| \le \sqrt{2}$$
 and $0 \le \arg(z-i) \le \frac{\pi}{4}$

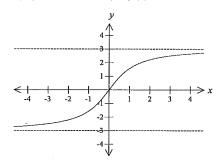
(B)
$$|z-1| \le \sqrt{2}$$
 and $0 \le \arg(z+i) \le \frac{\pi}{4}$

(C)
$$|z-1| \le 1$$
 and $0 \le \arg(z-i) \le \frac{\pi}{4}$

(D)
$$|z-1| \le 1$$
 and $0 \le \arg(z+i) \le \frac{\pi}{4}$

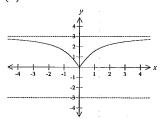
2

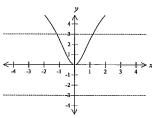
5 The diagram shows the graph of the function y = f(x).



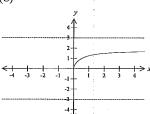
Which of the following is the graph of $y = \sqrt{f(x)}$?

(A)

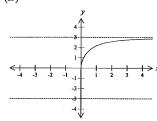




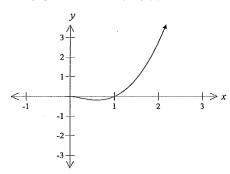
(C)



(D)

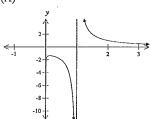


6 The diagram shows the graph of the function y = f(x).

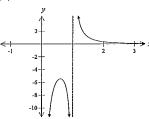


Which of the following is the graph of $y = \frac{1}{f(x)}$?

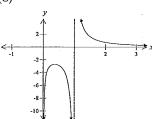
(A)



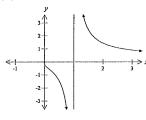
(B)



(C)



(D)



- 7 Which of the following is an expression for $\int \frac{1}{\sqrt{7-6x-x^2}} dx$?
 - (A) $\sin^{-1}\left(\frac{x-3}{2}\right) + c$

(B) $\sin^{-1}\left(\frac{x+3}{2}\right) + e^{-x}$

(C) $\sin^{-1}\left(\frac{x-3}{4}\right) + c$

- (D) $\sin^{-1}\left(\frac{x+3}{4}\right) + c$
- 8 Which of the following is an expression for $\int \frac{1}{\sqrt{x^2 6x + 10}} dx$?
 - (A) $\ln\left(x-3-\sqrt{x^2-6x+10}\right)+c$
 - (B) $\ln\left(x+3-\sqrt{x^2-6x+10}\right)+c$
 - (C) $\ln\left(x-3+\sqrt{x^2-6x+10}\right) + \frac{1}{2}$
 - (D) $\ln\left(x+3+\sqrt{x^2-6x+10}\right)+c$
- 9 The equation $4x^3 27x + k = 0$ has a double root. What are the possible values of k?
 - (A) ±4
 - (B) ±9
 - (C) ±27
 - (D) $\pm \frac{81}{2}$
- 10 Given that $(x-1)p(x) = 16x^5 20x^3 + 5x 1$, then if $p(x) = (4x^2 + ax 1)^2$, the value of a is:
 - (A) I
 - (B)
 - (C) $\frac{1}{2}$
 - (D)

Blank page

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet

Marks

(a) Using the substitution $u = e^x + 1$ or otherwise, evaluate

$$\int_0^1 \frac{e^x}{\left(1+e^x\right)^2} \, dx. \tag{3}$$

(b) Find
$$\int \frac{1}{x \ln x} dx$$
.

(c) (i) Find a, b, and c, such that

$$\frac{16}{(x^2+4)(2-x)} = \frac{ax+b}{x^2+4} + \frac{c}{2-x}.$$

(ii) Find
$$\int \frac{16}{(x^2+4)(2-x)} dx$$
.

(d) Using integration by parts ONLY, evaluate

$$\int_0^1 \sin^{-1} x \ dx.$$

(e) Use the substitution $t = \tan \frac{\theta}{2}$ to show that:

$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{4\sin\theta - 2\cos\theta + 6} = \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right).$$

Question 12 (15 marks) Start a new answer booklet

Marks

- (a) Given $z = \frac{\sqrt{3} + i}{1 + i}$
 - (i) Find the argument and modulus of z.

2

(ii) Find the smallest positive integer n such that z^n is real.

1

(b) The complex number z moves such that $\operatorname{Im}\left[\frac{1}{\overline{z}-i}\right]=2$.

Show that the locus of z is a circle.

2

(c) Sketch the region in the complex plane where the inequalities

$$|z+1-i| < 2$$
 and $0 < \arg(z+1-i) < \frac{3\pi}{4}$ hold simultaneously.

3

(d) Find the three different values of z for which

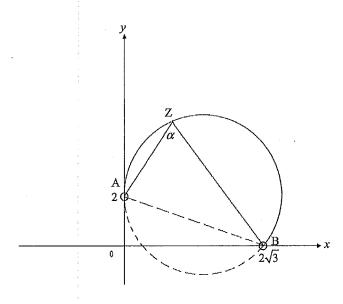
$$z^3 = \frac{1+i}{\sqrt{2}}.$$

3

Question 12 continues on the next page

The locus of the complex number Z, moving in the complex plane such that $arg(Z-2\sqrt{3})-arg(Z-2i)=\frac{\pi}{3}$, is a part of a circle.

The angle between the lines from 2i to Z and then from $2\sqrt{3}$ to Z is α , as shown in the diagram below.



(i) Show that $\alpha = \frac{\pi}{3}$

2

(ii) Find the centre and the radius of the circle.

Question 13	(15 marks)	Start a new answer booklet
-------------	------------	----------------------------

Marks

1

2

2

1

3

2

Question 14 (15 marks) Start a new answer booklet

(a) Consider the polynomial equation

$$x^4 + ax^3 + bx^2 + cx + d = 0$$

where a, b, c, and d are all integers. Suppose the equation has a root of the form x = ki, where k is real, and $k \neq 0$.

- (i) State why the conjugate x = -ki is also a root.
 - ic willy the conjugate $x = -\kappa t$ is also a root.
- (ii) Show that $c = k^2 a$.
- (iii) Show that $c^2 + a^2d = abc$.
- (iv) If x = 2 is also a root of the equation, and b = 0, show that d and c are both even.
- (b) (i) Solve $z^5 + 1 = 0$ by De Moivre's Theorem, leaving your solutions in modulus-argument form.
 - (ii) Prove that the solutions of $z^4 z^3 + z^2 z + 1 = 0$ are the non-real solutions of $z^5 + 1 = 0$.
 - (iii) Show that if $z^4 z^3 + z^2 z + 1 = 0$ where $z = cis\theta$ then $4\cos^2\theta 2\cos\theta 1 = 0$.
 - Hint: $z^4 z^3 + z^2 z + 1 = 0 \Rightarrow z^2 z + 1 \frac{1}{z} + \frac{1}{z^2} = 0$
 - (iv) Hence, find the exact value of $\sec \frac{3\pi}{5}$.

(a) (i) Determine the real values of λ for which the equation

$$\frac{x^2}{4-\lambda} + \frac{y^2}{2-\lambda} = 1 \text{ defines}$$

- (α) an ellipse
- (β) a hyperbola
- (ii) Sketch the curve corresponding to the value λ = 1, indicating the positions of the foci and directrices and stating their coordinates and equations respectively. Also mark any axes intercepts on your diagram.
- (iii) Describe how the shape of this curve changes as λ increases from 1 towards 2. What is the limiting position of the curve as 2 is approached?
- (b) (i) Show that the equation of the normal to the hyperbola $xy=c^2$ at $P(cp,\frac{c}{p}) \text{ is } p^3x-py=c(p^4-1).$
 - (ii) The normal at $P(cp,\frac{c}{p})$ meets the hyperbola $xy=c^2$ again at $Q(cq,\frac{c}{q}).$ Prove that $p^3q=-1.$
 - (iii) Hence, show that the locus of the midpoint R of PQ is given by $c^2(x^2 y^2)^2 + 4x^3y^3 = 0.$

Marks

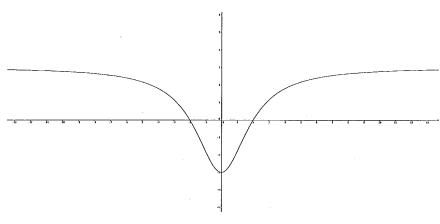
1

1

Question 15 (15 marks) Start a new answer booklet

Marks

(a) Given below is the graph of $f(x) = 3 - \frac{24}{x^2 + 4}$.



Use the graph of y = f(x) to sketch, on separate axes, the graphs of

(i)
$$y = [f(x)]^2$$

2

(ii)
$$y = \sqrt{f(x)}$$

2

(iii)
$$y = f'(x)$$

2

Each graph should be at least one - third of a page in size.

(b) Consider the curve that is defined by $4x^2 - 2xy + y^2 - 6x = 0$

(i) Show that
$$\frac{dy}{dx} = \frac{3 - 4x + y}{y - x}$$

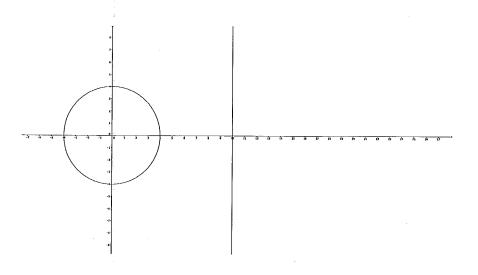
2

(ii) Find the coordinates of all points where the tangent is vertical.

2

Question 15 continues on the next page

(c) A solid is formed by rotating the area enclosed by the curve $x^2 + y^2 = 16$ through one complete revolution about the line x = 10.



(i) Use the method of slicing to show that the volume of this solid is

$$V = 40\pi \int_{-4}^{4} \sqrt{16 - y^2} \, dy$$

(ii) Find the exact volume of the solid.

Question 16 (15 marks) Start a new answer booklet

Marks

- (a) Let $f(x) = (1 \frac{x^2}{2}) \cos x$
 - (i) Show that f(x) is an even function.

1

(ii) Find expressions for f'(x) and f''(x).

2

(iii) Deduce that $f'(x) \le 0$ for $x \ge 0$.

2

(iv) Hence, show that $\cos x \ge 1 - \frac{x^2}{2}$.

2

(b) (i) Use the principle of mathematical induction to prove that

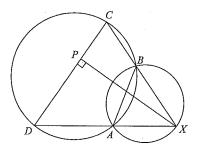
$$(1+x)^n > 1+nx$$
 for $n > 1$ and $x > -1$

3

(ii) Hence, deduce that $\left(1-\frac{1}{2n}\right)^n > \frac{1}{2}$ for n > 1.

1

(c)



In the diagram above, AB = AD = AX and $XP \perp DC$.

(i) Prove that $\angle DBX = 90^{\circ}$

2

(ii) Hence, or otherwise, prove that AB = AP.

Year 12 Mathematics Extension 2

Section I - Answer Sheet

Student Number	- ANSWERS
----------------	-----------

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:
$$2+4=(A)\ 2$$
 (B) 6 (C) 8 (D) 9

 If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then
indicate the correct answer by writing the word correct and drawing an arrow as follows.

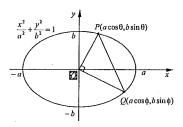


- 1. A O BO CO D
- 2. A B C D ○
- 3. A O BO CO D
- 4. Λ B C D ○
- 5. A O B O C DO
- 6. A B○ C D○
- 7. A O B O C O D
- 8. A O B O C DO
- 9. AO BO C DO
- 10. A B C D ○

2012 X2 Trial HSC ~ Multiple Choice Answers

1.
$$b^2 = a^2(e^2 - 1)$$
 $a^2 = 144$ and $b^2 = 25$.
 $25 = 144(e^2 - 1)$ $a = 12$ $b = 5$
 $(e^2 - 1) = \frac{25}{144}$ or $e^2 = \frac{169}{144}$ or $e = \frac{13}{12}$
Equation of the directrices are $x = \pm \frac{a}{e} = \pm \frac{144}{13}$. (D)

2. $POQ \text{ is a right-angled triangle. Therefore } OP^2 + OQ^2 = PQ^2.$ $a^2\cos^2\theta + b^2\sin^2\theta + a^2\cos^2\phi + b^2\sin^2\phi = a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2$ $a^2(\cos^2\theta + \cos^2\phi) + b^2(\sin^2\theta + \sin^2\phi) = a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2$ Hence $0 = -2a^2\cos\theta\cos\phi - 2b^2\sin\theta\sin\phi$ $2b^2\sin\theta\sin\phi = -2a^2\cos\theta\cos\phi$ $\frac{\sin\theta\sin\phi}{\cos\theta\cos\phi} = \frac{-2a^2}{2b^2} \text{ or } \tan\theta\tan\phi = -\frac{a^2}{b^2}$



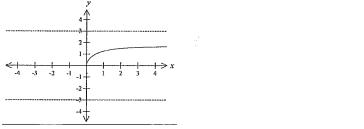
3.
$$\tan \theta = \frac{1}{-\sqrt{3}}$$

 $\theta = \frac{5\pi}{6}$
 $r^2 = x^2 + y^2$
 $= (\sqrt{3})^2 + 1^2$
 $r = 2$
 $-\sqrt{3} + i = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})$ (D)

(B)

 $|z-1| \le \sqrt{2}$ represents a region with a centre is (1, 0) and radius is less than or equal to $\sqrt{2}$. $0 \le \arg(z+i) \le \frac{\pi}{4}$ represents a region between angle 0 and $\frac{\pi}{4}$ whose vertex is (-1,0) not including the vertex $|z-1| \le \sqrt{2}$ and $0 \le \arg(z+i) \le \frac{\pi}{4}$ **(B)**

5. (C)



6. (C)

$$\begin{array}{c|c}
 & y \\
\hline
2 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

7.
$$\int \frac{1}{\sqrt{7 - 6x - x^2}} dx = \int \frac{1}{\sqrt{16 - 9 - 6x - x^2}} dx$$

$$= \int \frac{1}{\sqrt{16 - (x + 3)^2}} dx$$

$$= \sin^{-1} \left(\frac{x + 3}{4}\right) + c$$
(D)

8. (C) $\int \frac{dx}{\sqrt{x^2 - 6x + 10}} = \int \frac{dx}{\sqrt{x^2 - 6x + 9 + 1}} = \frac{dx}{\sqrt{(x - 3)^2 + 1}}$

$$\int \frac{dx}{\sqrt{x^2 - 6x + 10}} = \int \frac{dx}{\sqrt{x^2 - 6x + 9 + 1}} = \frac{dx}{\sqrt{(x - 3)^2 + 1}}$$
$$= \ln\left(x - 3 + \sqrt{(x - 3)^2 + 1}\right) + c$$
$$= \ln\left(x - 3 + \sqrt{x^2 - 6x + 10}\right) + c$$

Let $P(x) = 4x^3 - 27x + k$ 9. (C) $P'(x) = 12x^2 - 27$

Let α be the double root.

Hence $P(\alpha) = 0$ and $P'(\alpha) = 0$

When $P'(\alpha) = 0$ then $12\alpha^2 - 27 = 0$

$$\alpha^2 = \frac{9}{4}$$

$$\alpha = \pm \frac{3}{2}$$

When $P(\alpha) = 0$ then $4\alpha^3 - 27\alpha + k = 0$

$$k = 27\alpha - 4\alpha^{3}$$

$$= \alpha(27 - 4\alpha^{2})$$

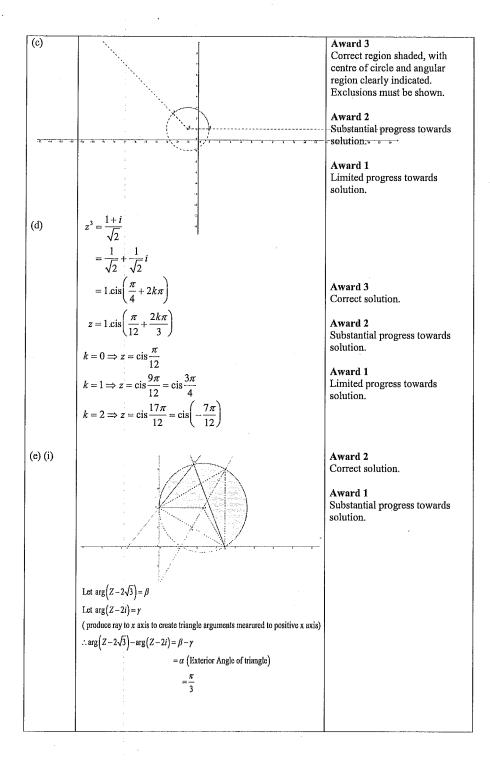
$$= \pm \frac{3}{2}(27 - 4 \times \frac{9}{4})$$

$$= \pm 27$$

10.
$$(x-1)(4x^2 + ax - 1)^2 = 16x^5 - 20x^3 + 5x - 1$$
 (B)
Let $x = 2$, $1.(15 + 2a)^2 = 16.2^5 - 20.2^3 + 5.2 - 1 = 361$
 $\therefore 15 + 2a = \pm 19$
 $\therefore 2a = -15 \pm 19 = 4 \text{ or } -34$
 $\therefore a = 2 \text{ or } -17$.

Year 12	Mathematics Extension 2	Trial HSC Examination 2012
Question 1		
TO	Outcome Addressed in this Question	
	lies further techniques of integration, including partial fracturence formulae, to problems	tions, integration by parts and
Part	Solutions	Marking Guidelines
(a)	1	Award 3
	$\int \frac{e^x}{\left(1 + e^x\right)^2} dx \qquad u = e^x + 1 \Rightarrow du = e^x dx$	Correct solution.
	$= \int_{0}^{\varepsilon+1} \frac{du}{u^2}$	Award 2 Substantial progress towards solution.
	$= \left[-\frac{1}{u}\right]_{2}^{e+1}$	Award 1 Attempts to manipulate integrand and find primitive.
	$= -\frac{1}{e+1} - \left(-\frac{1}{2}\right)$	
	$=\frac{1}{2}-\frac{1}{e+1}$	
(b)	$\int \frac{1}{x \ln x} dx \qquad u = \ln x \Rightarrow du = \frac{dx}{x}$	Award 1 Correct solution.
	$=\int \frac{du}{u}$	
	$= \ln u + c$ $= \ln(\ln x) + c$	
(c) (i)	$16 = (ax + b)(2 - x) + c(x^{2} + 4)$ $x = 2 \Rightarrow 16 = 8c : c = 2 \dots (1)$	Award 2 Correct answers for a , b and c .
	$x = 1 \Rightarrow 16 = a + b + 10 \therefore a + b = 6 \dots (2)$ $x = 0 \Rightarrow 16 = 2b + 8 \therefore b = 4 \dots (3)$ $(3) \rightarrow (2) \Rightarrow a = 2$	Award 1 Correct answers for two of a , b or c .
(ii)	$\int \frac{16}{(x^2+4)(2-x)} dx$	Award 2 Correct solution.
	$= \int \left(\frac{2x+4}{x^2+4} + \frac{2}{2-x}\right) dx$ $= \int \left(\frac{2x}{x^2+4} + \frac{4}{x^2+4} - \frac{2}{x-2}\right) dx$	Award 1 Substantial progress towards solution.
	$= \ln(x^2 + 4) + 2 \tan^{-1}\left(\frac{x}{2}\right) - 2 \ln(x - 2) + c$	

Year 12	Mathematics Extension 2	Trial HSC Examination 2012
Question 12		
F2 -	Outcome Addressed in this Question	
E3 uses	s the relationship between algebraic and geometric represer Solutions	
(a) (i)		Marking Guidelines Award 2
(4) (1)	$z = \frac{\sqrt{3+i}}{1+i}$	Correct answers.
	174	
	$\arg z = \arg\left(\sqrt{3} + i\right) - \arg\left(1 + i\right)$	Award 1
	ππ	Substantial progress towards
	$=\frac{\pi}{6}-\frac{\pi}{4}$	solution or only one correct
	π	
	$=-\frac{\pi}{12}$	_
	$ z = \frac{2}{\sqrt{2}} = \sqrt{2}$	
	$ z = \frac{1}{\sqrt{2}} = \sqrt{2}$	
(ii)	$z = \sqrt{2} \operatorname{cis} \left(-\frac{\pi}{12} \right)$	Award 1
	12)	Correct solution,
	$z^{12} = (\sqrt{2})^2 \operatorname{cis}(-\pi) = -2^6 = -64$	
	$\therefore n=12.$	
	,	
(b)	$\operatorname{Im} \left[\frac{1}{\overline{z} - i} \right] = 2$	Award 2
	$\lim_{z \to i} \left[\frac{\overline{z} - i}{\overline{z} - i} \right]^{-z}$	Correct solution.
	Let $z = x + iy$	Award 1
	$\frac{1}{\overline{z}-i} = \frac{1}{x-iy-i}$	Substantial progress towards
	$\frac{\overline{z}-i}{\overline{z}-i}-\frac{\overline{x}-iy-i}{x}$	solution.
	$= \frac{1}{x - i(y+1)} \times \frac{x + i(y+1)}{x + i(y+1)}$	
	$=\frac{1}{x-i(y+1)}\times\frac{1}{x+i(y+1)}$	
	r+i(v+1)	
	$= \frac{x + i(y+1)}{x^2 + (y+1)^2}$	
	$\operatorname{Im}\left[\frac{1}{y+1}\right] = 2 \Rightarrow \frac{y+1}{y+1} = 2$	
	$\operatorname{Im}\left[\frac{1}{\overline{z}-i}\right] = 2 \Rightarrow \frac{\left(\nu+1\right)}{x^2 + \left(\nu+1\right)^2} = 2$	
	$\therefore y + 1 = 2x^2 + 2(y+1)^2 = 2x^2 + 2y^2 + 4y + 2$	
	$2x^{2} + 2y^{2} + 4y + 2 - y - 1 = 0$	
	$2x^2 + 2\left(y^2 + \frac{3y}{2} + \frac{9}{16}\right) - \frac{1}{8} = 0$	
	$\therefore x^2 + \left(y + \frac{3}{4}\right)^2 = \frac{1}{16}$	
	, ,, ==	
	∴The locus is a circle	
		-



(ii)	Let H be the centre of the circle.
	$BA^2 + 2^2 = \left(2\sqrt{3}\right)^2$
	∴ <i>BA</i> = 4
	$\angle AHB = \frac{2\pi}{3}$ (Angle at centre is twice angle at the circumference)
	$\angle AHM = \frac{\pi}{3}$
	$\frac{2}{AH} = \cos \frac{\pi}{6} \left(MH \text{ is the perpendicular bisector of } BA \right)$
	$\therefore AH(radius) = \frac{4}{\sqrt{3}}$
	$\angle DBA = \frac{\pi}{6} = \angle HAM$
	∴ <i>HA</i> <i>DB</i>
	Let H be the centre of the circle. $BA^2 + 2^2 = (2\sqrt{3})^2$ $\therefore BA = 4$ $\angle AHB = \frac{2\pi}{3}$ (Angle at centre is twice angle at the circumference) $\angle AHM = \frac{\pi}{3}$ $\frac{2}{AH} = \cos \frac{\pi}{6} (MH \text{ is the perpendicular bisector of } BA \text{)}$ $\therefore AH(radius) = \frac{4}{\sqrt{3}}$ $\angle DBA = \frac{\pi}{6} = \angle HAM$ $\therefore HA \parallel DB$ Centre = $\left(\frac{4}{\sqrt{3}}, 2\right)$
4	(x coordinate length is the radius as the radius is perpendicular to the tar
	at (0,2) and the centre height is 2 the value at the y axis)

Award 2 Correct solution. Award 1 Substantial progress towards solution.

Year 12	Mathematics Extension 2	Trial HSC Examination 2012
Question		
T. (Outcome Addressed in this Question	
	es efficient techniques for the algebraic manipulation require those involving polynomials.	ed in dealing with questions such
Part	Solutions	Marking Guidelines
(a) (i)	The coefficients are real.	Award 1
(-) (-)	By the conjugate root theorem, $x = -ki$ is also a root.	Correct explanation.
(ii)	$(ki)^4 + a(ki)^3 + b(ki)^2 + c(ki) + d = 0$	Award 2 Correct solution.
	$k^4 - ak^3i - bk^2 + cki + d = 0$	
	$\left(k^4 - bk^2 + d\right) - i\left(ak^3 - ck\right) = 0$	Award 1 Substantial progress towards
	Equating imaginary parts,	solution.
	$ak^3 - ck = 0$,
	$k(ak^2-c)=0$	
	$\therefore k = 0 $ (which is not a solution)	
	or $\therefore c = ak^2$	
(iii)	Equating real parts,	Award 2 Correct solution.
	$k^4 - bk^2 + d = 0$	
	$\left \left(\frac{c}{a} \right)^2 - b \left(\frac{c}{a} \right) + d = 0 \right $	Award 1 Substantial progress towards solution.
	$\frac{c^2}{c^2} - \frac{bc}{a} + d = 0$	
	$\frac{a^2 - abc + da^2}{a^2} = 0$	
	u :	
	$\therefore c^2 - abc + da^2 = 0$ $\therefore c^2 + a^2 d = abc$	
	$\therefore c + a \ a = abc$	
(iv)	Substitute $x = 2$,	Award 2 Correct solution.
	16 + 8a + 2c + d = 0	Consect solution,
	i.e. $d = -16 - 8a - 2c = 2(-8 - 4a - 2)$	Award 1
	$\therefore d$ is even	Substantial progress towards solution.
	Substitute $b = 0$ into $c^2 + a^2d = abc$ $c^2 + a^2d = 0$	
	Since d is even, c^2 is even.	
	Since a is even, b is even. Since c^2 is even, then c is even.	
	:	
	1	ì

(b) (i)	$z^{2} = -1$ $\therefore z^{2} = \operatorname{cis}\left(\pi + 2k\pi\right)$ $\therefore z = \operatorname{cis}\left(\frac{\pi + 2k\pi}{5}\right)$	Award 2 Correct solution.
	i.e. $z = \operatorname{cis}\left(\frac{\pi + 2.0 \pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.1 \pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.2 \pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.3 \pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.4 \pi}{5}\right)$ $= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), \operatorname{cis}\left(\frac{5\pi}{5}\right), \operatorname{cis}\left(\frac{7\pi}{5}\right), \operatorname{cis}\left(\frac{9\pi}{5}\right)$ $= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), \operatorname{cis}(\pi), \operatorname{cis}\left(-\frac{3\pi}{5}\right), \operatorname{cis}\left(\frac{\pi}{5}\right)$ $= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), -1, \operatorname{cis}\left(-\frac{3\pi}{5}\right), \operatorname{cis}\left(\frac{\pi}{5}\right)$	Award 1 Substantial progress towards solution.
(ii)	$z^5 + 1 = (z+1)(z^4 - z^3 + z^2 - z + 1)$ The only real root is $z = -1$ From (i), the other roots must be the solutions to $z^4 - z^3 + z^2 - z + 1 = 0$	Award 1 Correct explanation.
(iii)	$\begin{vmatrix} z^4 - z^3 + z^2 - z + 1 = 0 \\ \text{becomes} \end{vmatrix}$	Award 3 Correct solution.
	$\begin{vmatrix} z^2 - z + 1 - \frac{1}{z} + \frac{1}{z^2} = 0 & \text{(dividing through by } z^2 \text{)} \\ \therefore z^2 + z^{-2} - (z + z^{-1}) + 1 = 0 \end{vmatrix}$	Award 2 Substantial progress towards solution.
	$\therefore 2\cos 2\theta - 2\cos \theta + 1 = 0$ Using the result $z'' + z^{-n} = 2\cos n\theta$ (where $z = \cos \theta + i\sin \theta$) i.e. $2(2\cos^2 \theta - 1) - 2\cos \theta + 1 = 0$	Award 1 Limited progress towards solution.
	$\therefore 4\cos^2\theta - 2\cos\theta - 1 = 0$	
(iv)	$z = \operatorname{cis} \frac{3\pi}{5}$ is a solution of $z^4 - z^3 + z^2 - z + 1 = 0$	Award 2 Correct solution.
	$\therefore \theta = \frac{3\pi}{5} \text{ is a solution of } 4\cos^2\theta - 2\cos\theta - 1 = 0$ $\cos\theta = \frac{-(-2)\pm\sqrt{(-2)^2 - 4\cdot4\cdot - 1}}{2\cdot4}$	Award 1 Substantial progress towards solution.
	$=\frac{2\pm\sqrt{20}}{8}$ $=\frac{1\pm\sqrt{5}}{4}$	
-	But $\cos \frac{3\pi}{5} < 0 \Rightarrow \sec \frac{3\pi}{5} < 0$	
	$\therefore \sec \frac{3\pi}{5} = \frac{4}{1-\sqrt{5}} = -\left(1+\sqrt{5}\right)$	

Year 12	Mathematics Extension 2	Trial HSC Examination 2012
Question 14	Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	

uses the relationship between algebraic and geometric representations of conic sections

	s efficient techniques for the algebraic manipulation require	ed in dealing with questions such
	hose involving conic sections	
Part	Solutions $4-\lambda > 0$ and $2-\lambda > 0$	Marking Guidelines
(a) (i)(α)	:	Award 1 Correct answer.
	$\therefore \lambda < 4 \text{ and } \lambda < 2$	Correct answer.
	Hence, $\lambda < 2$.	
(i)(β)	4 150-4 2 1 40	
(4)(4)	$4-\lambda > 0$ and $2-\lambda < 0$	Award 1
	or	Correct answer.
	$4-\lambda < 0$ and $2-\lambda > 0$	
	Hence, $2 < \lambda < 4$.	
	(Not possible to have $\lambda < 2$ and $\lambda > 4$)	
(ii)	x^2 y^2	Award 3
	$\lambda = 1: \frac{x^2}{3} + \frac{y^2}{1} = 1$	Correct graph, with foci,
	b^2 1 2 $\sqrt{2}$	directrices and intercepts with
	$e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{1}{3} = \frac{2}{3} \Rightarrow e = \sqrt{\frac{2}{3}}$	axes clearly indicated.
	Foci = $(\pm ae, 0) = (\pm \sqrt{2}, 0)$	
	$ \text{Foch} - (\pm ae, 0) = (\pm \sqrt{2}, 0)$	Award 2 Correct graph, with any two of
	Directrices: $x = \pm \frac{a}{e} = \pm \frac{3}{\sqrt{2}}$	foci, directrices and intercepts
	$\frac{\text{Directices}, x = \pm \frac{1}{e} = \pm \sqrt{2}}{\sqrt{2}}$	with axes indicated.
		Award 1
		Correct graph, with only one of foci, directrices and intercepts
		with axes indicated.
	ā	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	g'	
	z	
(iii)	As λ increases from 1 to 2, $4 - \lambda$ decreases from 3 to 2	Award 3
(111)	while $2 - \lambda$ decreases from 1 to 0.	Correct solution with all
	The curve remains an ellipse with the semi – major axis	reasoning provided.
	reducing from $\sqrt{3}$ to $\sqrt{2}$ and the semi – minor axis from	Award 2
	1 to 0.	Solution with substantial
	As 2 is approached, $b \rightarrow 0$, the ellipse becomes a line	reasoning provided.
	segment joining $(-\sqrt{2},0)$ to $(\sqrt{2},0)$	Award 1
		Solution with limited reasoning
		provided
		1

(b) (i)	$xy = c^2$	Award 2
(0) (1)	*	Correct solution.
	$y = \frac{c^2}{x}$	
	$\frac{dy}{dx} = -\frac{c^2}{x^2}$	Award 1
		Substantial progress towards
	$At P\left(cp, \frac{c}{p}\right), \frac{dy}{dx} = -\frac{c^2}{\left(cp\right)^2} = -\frac{1}{p^2}$	solution.
	$(p) dx (cp) p^2$	
	$\therefore m_{\text{langenl}} = -\frac{1}{p^2}$	
:	$m_{\text{cornsi}} = p^2$	
	Equation of normal is	
	1 -	
	$y - \frac{c}{p} = p^2 \left(x - cp \right)$	
	$py-c=p^3(x-cp)$	
	$\therefore p^3x - py = cp^4 - c = c(p^4 - 1)$	
	$\frac{c-c}{c-c}$	
(ii)	$m_{pQ} = \frac{\frac{c}{p} - \frac{c}{q}}{\frac{c}{cp - cq}} = \frac{\frac{cq - cp}{pq}}{\frac{cq}{cp - cq}} = -\frac{1}{pq}$	Award 2
	of of of the	Correct solution.
	$H_{\text{enge}} = \frac{1}{1 - r^2}$	Award 1
	Hence, $-\frac{1}{pq} = p^2$	Substantial progress towards
	$\therefore p^3 q = -1$	solution.
	(c,c)	·
(iii)	$R = \left(\frac{cp + cq}{2}, \frac{\frac{c}{p} + \frac{c}{q}}{2}\right) = \left(\frac{c}{2}(p+q), \frac{c}{2}(\frac{p+q}{pq})\right)$	Award 3
	2 , 2 (2(p, 4), 2(pq))	Correct solution.
	(7)	·
	Let $x = \frac{c}{2}(p+q)$ and $y = \frac{c}{2}(\frac{p+q}{pq})$	Award 2
	c(n, n)	Substantial progress towards solution
	$\therefore \frac{x}{y} = \frac{\frac{c}{2}(p+q)}{\frac{c}{2}(\frac{p+q}{pq})} = pq$	
	$\frac{y}{2} \left(\frac{p+q}{na} \right)$	Award 1
	- P7 /	Limited progress towards solution
	From (ii) $pq = -\frac{1}{p^2}$	SOIGHOH
	$\therefore \frac{x}{y} = -\frac{1}{n^2}$	
	Using the equation of the normal,	
	$p^2x - y = \frac{c}{p}(p^4 - 1)$	
(iv)	(v) $c((v)^2)$	
(10)	$-\left(\frac{y}{x}\right)x - y = \frac{c}{p}\left(\left(-\frac{y}{x}\right)^2 - 1\right)$	
	$-2y = \frac{c}{n} \left(\frac{y^2 - x^2}{x^2} \right)$	
	$-2y = \frac{1}{p} \left(\frac{y}{x^2} \right)$	·
	Square both sides,	
	$4y^2 = c^2 \times \left(-\frac{x}{y}\right) \left(\frac{x^2 - y^2}{x^2}\right)^2$	
	1	
	$4y^3x^3 = -c^2(x^2 - y^2)^2$	
	$\therefore 4y^3x^3 + c^2(x^2 - y^2)^2 = 0$	
	. ,	

Question 15 Solutions and Marking Guidelines				
Outcomes Addressed in this Question				
	nbines the ideas of algebra and calculus to determine the im le variety of functions	portant features of the graphs of a		
	s the techniques of slicing to determine volumes			
Part	Solutions	Marking Guidelines		
(a) (i)	:			
		Award 2		
		Correct graph.		
		Award 1		
		Substantially correct graph.		
(ii)	,			
		Award 2		
		Correct graph.		
		Award 1		
		Substantially correct graph.		
	* *	Award 2		
	,	Correct graph.		
(iii)	; •	Award 1		
		Substantially correct graph		
	· · · · · · · · · · · · · · · · · · ·			
(b) (i)	$4x^2 - 2xy + y^2 - 6x = 0$			
(b) (i)	4x - 2xy + y - 6x = 0 Implicit differentiation yields	Award 2 Correct solution		
		Contou polition		
	$8x - 2x \frac{dy}{dx} - y \cdot 2 + 2y \frac{dy}{dx} - 6 = 0$	Award 1		
	650	Substantial progress towards solution		
	$4x - x\frac{dy}{dx} - y + y\frac{dy}{dx} - 3 = 0$			
	$(y-x)\frac{dy}{dx} = 3-4x+y$			
	biby			
	$\frac{dy}{dx} = \frac{3 - 4x + y}{y - x}$			
	u y-x	<u> </u>		

Mathematics Extension 2

Trial HSC Examination 2012

Year 12

If the tangent is vertical, $\frac{dy}{dx}$ is undefined.

$$\therefore y - x = 0 \Rightarrow x = y$$

Substitute into the equation of the curve

$$4x^2 - 2x \cdot x + x^2 - 6x = 0$$

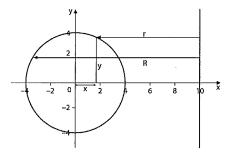
$$3x^2 - 6x = 0$$

$$3x(x-2)=0$$

$$\therefore x = 0 \text{ or } x = 2$$

.. Points where tangents are vertical are

$$(0,0)$$
 and $(2,2)$



Slices are taken perpendicular to the axis of rotation (x=10). The base is an annulus.

$$A = \pi(R^2 - r^2)$$
$$= \pi(R+r)(R-r)$$

Now

$$r=10-x$$

$$R=10+x$$

$$=10-\sqrt{16-y^2}$$

$$=10+\sqrt{16-y^2}$$

Area of the annulus is

$$A = \pi(R+r)(R-r)$$

$$= \pi (10 + \sqrt{16 - y^2} + 10 - \sqrt{16 - y^2})(10 + \sqrt{16 - y^2} - 10 + \sqrt{16 - y^2})$$

= $\pi (20)(2\sqrt{16 - y^2})$

$$=40\pi\sqrt{16-y^2}$$

$$\Delta V = 40\pi \sqrt{16 - y^2} . \Delta y$$

$$V = \lim_{\Delta y \to 0} \sum_{y = -4}^{4} 40\pi \sqrt{16 - y^2} \Delta y$$
$$= \int_{-4}^{4} 40\pi \sqrt{16 - y^2} \, dy$$
$$= 40\pi \int_{-4}^{4} \sqrt{16 - y^2} \, dy$$

$$= \int_{-4}^{4} 40\pi \sqrt{16 - y^2} \, dy$$

$$=40\pi \int_{-4}^{4} \sqrt{16-y^2} \, dy$$

Award 2

Correct solution.

Award 1

Substantial progress towards solution.

Award 3

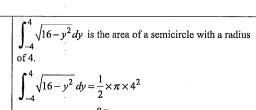
Correct solution.

Award 2

Correctly calculates the area of the annulus and attempts to determine the volume.

Award 1

Attempts to calculate the area of the annulus.



$$V = 40\pi \int_{-4}^{4} \sqrt{16 - y^2} \, dy$$
$$= 40\pi \times 8\pi$$
$$= 320\pi^2 \text{ unit}^3$$

Award 2

Correct answer.

Award 1

Using area of semi circle or appropriate integration.

Year 12	THATHOMATICS LATCHSTON 2	Trial HSC Examination 2012
Questio	Guidoimos	
770	Outcomes Addressed in this Question	
E2	chooses appropriate strategies to construct arguments and production	ofs in both concrete and abstract
	settings	
Part	communicates abstract ideas and relationships using appropria	te notation and logical argument
(a) (i)	Solutions	Marking Guidelines
(4)	$f(x) = \left(1 - \frac{(x)^2}{2}\right) - \cos(x)$	Award 1 Correct solution.
	$f(-x) = \left(1 - \frac{(-x)^2}{2}\right) - \cos(-x)$	
	$f(x) = \left(1 - \frac{(x)^2}{2}\right) - \cos(x) \text{ as } y = \cos x \text{ is an even function}$ $\therefore f(-x) = f(x)$	
	f(x) is an even function.	
(ii)	$f'(x) = \left(-\frac{2x}{2}\right) - (-\sin x) = \sin x - x$ $f''(x) = \cos x - 1$	Award 2 Correct expressions for
	$f(x) = \cos x - 1$	f'(x) and $f''(x)Award 1$
		Only one of $f'(x)$ or $f''(x)$ correct
(iii)	$f''(x) \le 0$ for $x \ge 0$ because $-1 \le \cos x \le 1$, hence, $\cos x - 1 \le 0$	Award 2 Correct solution.
	This means that $f'(x)$ is an decreasing function for $x \ge 0$. $f'(0) = 0 \therefore f'(x) \le f'(0)$	Award 1 Substantial progress towards
	i.e. $f'(x) \le 0$	solution
(iv)	Since $f'(x) \le 0$ then $f(x) \le f(0)$ for $x \ge 0$. f(0) = 0	Award 2 Correct solution.
	$\therefore f(x) \le 0 \text{ for } x \ge 0$	Award 1 Substantial progress towards
		solution
	$\therefore f(x) \le 0 \text{ for all } x$	
	$\therefore \cos x - \left(1 - \frac{x^2}{2}\right) \le 0$	
	$\therefore \cos x \le 1 - \frac{x^2}{2}$	

(b) (i)	Test the result for $n=2$ $(1+x)^2 > 1+2x$	Award 3 Correct solution.
	$1+2x+x^2>1+2x$	1
	1	Award 2 Attempts to prove the result true for $n = k+1$
	Since $x^2 > 0$ the result is true for $n = 2$	
	Assume the result is true for $n = k$ $(1+x)^k > 1+kx$	
	To prove the result is true for $n = k + 1$	Award 1 Establishes the result for $n=2$
	i.e we want to establish that $(1+x)^{k+1} > 1+(k+1)x$	Establishes the result for $n-2$
	$LHS = (1+x)^{k+1}$	
	$= (1+x)(1+x)^k$	
	> (1+x)(1+kx) Assumption for $n=k$	
	$> 1 + kx + x + kx^2$ $x > -1$ hence $(1+x) > 0$	·
	$ > 1 + kx + x \qquad kx^2 > 0 $	
	>1+(k+1)x	
	= RHS	
	Therefore the result holds true for $n = k + 1$	
	Hence the result is true for $n \ge 2$ by mathematical	
	induction.	
	1	
(ii)	From part (1) with $x = -\frac{1}{2n}$ ($n > 1$ it satisfies $x > -1$)	Award 1
	1 20 1 20 1	Correct solution.
	$\left(1-\frac{1}{2n}\right) > 1+n \times -\frac{1}{2n}$	
	$>\frac{1}{r}$ for $n>1$	
	2	
(c) (i)	The circle through D , B and X has centre A , since $AD = AB = AY$	Award 2
	Hence, DAX is a diameter.	
	Thus, $\angle DBX = 90^{\circ}$ (angle at circumference in semi-	
	circle equals 90°).	
	:	on a circle centred at A.
(ii)	By the converse of the angle in a semicircle, since	Award 2
()	$\angle DPX$ is a right angle, the circle with diameter DAX	Correct solution with full
		reasoning
	The (tauti).	Award 1
	:	through P without giving
		reasons.
	: 	
1		
(ii) (c) (i)	Thus, $\angle DBX = 90^{\circ}$ (angle at circumference in semi- circle equals 90°). By the converse of the angle in a semicircle, since	Award 2 Correct solution with full reasoning Award 1 Recognises that D, B and X li on a circle centred at A. Award 2 Correct solution with full reasoning Award 1 Argues that the circle with diameter DAX also passes through P without giving